L(s) = 1 | + 84i·3-s − 82i·5-s + 456·7-s − 4.86e3·9-s − 2.52e3i·11-s + 1.07e4i·13-s + 6.88e3·15-s − 1.11e4·17-s − 4.12e3i·19-s + 3.83e4i·21-s − 8.17e4·23-s + 7.14e4·25-s − 2.25e5i·27-s − 9.97e4i·29-s − 4.04e4·31-s + ⋯ |
L(s) = 1 | + 1.79i·3-s − 0.293i·5-s + 0.502·7-s − 2.22·9-s − 0.571i·11-s + 1.36i·13-s + 0.526·15-s − 0.550·17-s − 0.137i·19-s + 0.902i·21-s − 1.40·23-s + 0.913·25-s − 2.20i·27-s − 0.759i·29-s − 0.244·31-s + ⋯ |
Λ(s)=(=(256s/2ΓC(s)L(s)(0.707+0.707i)Λ(8−s)
Λ(s)=(=(256s/2ΓC(s+7/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
256
= 28
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
79.9705 |
Root analytic conductor: |
8.94262 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ256(129,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 256, ( :7/2), 0.707+0.707i)
|
Particular Values
L(4) |
≈ |
0.6700756648 |
L(21) |
≈ |
0.6700756648 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−84iT−2.18e3T2 |
| 5 | 1+82iT−7.81e4T2 |
| 7 | 1−456T+8.23e5T2 |
| 11 | 1+2.52e3iT−1.94e7T2 |
| 13 | 1−1.07e4iT−6.27e7T2 |
| 17 | 1+1.11e4T+4.10e8T2 |
| 19 | 1+4.12e3iT−8.93e8T2 |
| 23 | 1+8.17e4T+3.40e9T2 |
| 29 | 1+9.97e4iT−1.72e10T2 |
| 31 | 1+4.04e4T+2.75e10T2 |
| 37 | 1+4.19e5iT−9.49e10T2 |
| 41 | 1+1.41e5T+1.94e11T2 |
| 43 | 1+6.90e5iT−2.71e11T2 |
| 47 | 1+6.82e5T+5.06e11T2 |
| 53 | 1−1.81e6iT−1.17e12T2 |
| 59 | 1+9.66e5iT−2.48e12T2 |
| 61 | 1+1.88e6iT−3.14e12T2 |
| 67 | 1+2.96e6iT−6.06e12T2 |
| 71 | 1−2.54e6T+9.09e12T2 |
| 73 | 1−1.68e6T+1.10e13T2 |
| 79 | 1−4.03e6T+1.92e13T2 |
| 83 | 1−5.38e6iT−2.71e13T2 |
| 89 | 1−6.47e6T+4.42e13T2 |
| 97 | 1+6.06e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72532125753540279067780307607, −9.577656471168676227115989819965, −9.004117622771594297649082735016, −8.105087292105323844963876075342, −6.40310702394613329366114798368, −5.24091705598414179955281739247, −4.40262392439682416425100183962, −3.64416350855205688470013100548, −2.12233151472190567563808185408, −0.16054144682128735812978866171,
1.09218341792945546554962518828, 2.05363110490017659800337975830, 3.12577401834294823773825107298, 5.01206895375848133957518027066, 6.17195982811732043725960572218, 6.98445456768812272635542563173, 7.921895020352833980086120407616, 8.453648364449749936029808142988, 10.04218243679370980611432845593, 11.14925570086343818736714994976