L(s) = 1 | + 84i·3-s − 82i·5-s + 456·7-s − 4.86e3·9-s − 2.52e3i·11-s + 1.07e4i·13-s + 6.88e3·15-s − 1.11e4·17-s − 4.12e3i·19-s + 3.83e4i·21-s − 8.17e4·23-s + 7.14e4·25-s − 2.25e5i·27-s − 9.97e4i·29-s − 4.04e4·31-s + ⋯ |
L(s) = 1 | + 1.79i·3-s − 0.293i·5-s + 0.502·7-s − 2.22·9-s − 0.571i·11-s + 1.36i·13-s + 0.526·15-s − 0.550·17-s − 0.137i·19-s + 0.902i·21-s − 1.40·23-s + 0.913·25-s − 2.20i·27-s − 0.759i·29-s − 0.244·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.6700756648\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6700756648\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 84iT - 2.18e3T^{2} \) |
| 5 | \( 1 + 82iT - 7.81e4T^{2} \) |
| 7 | \( 1 - 456T + 8.23e5T^{2} \) |
| 11 | \( 1 + 2.52e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 1.07e4iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 1.11e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 4.12e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 8.17e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 9.97e4iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 4.04e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + 4.19e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 1.41e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 6.90e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 6.82e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.81e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 9.66e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 1.88e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 + 2.96e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 2.54e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 1.68e6T + 1.10e13T^{2} \) |
| 79 | \( 1 - 4.03e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 5.38e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 6.47e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 6.06e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72532125753540279067780307607, −9.577656471168676227115989819965, −9.004117622771594297649082735016, −8.105087292105323844963876075342, −6.40310702394613329366114798368, −5.24091705598414179955281739247, −4.40262392439682416425100183962, −3.64416350855205688470013100548, −2.12233151472190567563808185408, −0.16054144682128735812978866171,
1.09218341792945546554962518828, 2.05363110490017659800337975830, 3.12577401834294823773825107298, 5.01206895375848133957518027066, 6.17195982811732043725960572218, 6.98445456768812272635542563173, 7.921895020352833980086120407616, 8.453648364449749936029808142988, 10.04218243679370980611432845593, 11.14925570086343818736714994976