L(s) = 1 | + 99.9·3-s − 610i·5-s + 1.39e3i·7-s + 3.42e3·9-s + 1.84e4·11-s − 5.47e3i·13-s − 6.09e4i·15-s + 7.30e4·17-s − 1.94e4·19-s + 1.39e5i·21-s − 2.37e5i·23-s + 1.85e4·25-s − 3.13e5·27-s − 1.28e5i·29-s + 6.79e4i·31-s + ⋯ |
L(s) = 1 | + 1.23·3-s − 0.976i·5-s + 0.582i·7-s + 0.521·9-s + 1.26·11-s − 0.191i·13-s − 1.20i·15-s + 0.875·17-s − 0.149·19-s + 0.718i·21-s − 0.847i·23-s + 0.0474·25-s − 0.589·27-s − 0.181i·29-s + 0.0735i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(3.966094937\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.966094937\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 99.9T + 6.56e3T^{2} \) |
| 5 | \( 1 + 610iT - 3.90e5T^{2} \) |
| 7 | \( 1 - 1.39e3iT - 5.76e6T^{2} \) |
| 11 | \( 1 - 1.84e4T + 2.14e8T^{2} \) |
| 13 | \( 1 + 5.47e3iT - 8.15e8T^{2} \) |
| 17 | \( 1 - 7.30e4T + 6.97e9T^{2} \) |
| 19 | \( 1 + 1.94e4T + 1.69e10T^{2} \) |
| 23 | \( 1 + 2.37e5iT - 7.83e10T^{2} \) |
| 29 | \( 1 + 1.28e5iT - 5.00e11T^{2} \) |
| 31 | \( 1 - 6.79e4iT - 8.52e11T^{2} \) |
| 37 | \( 1 - 3.47e6iT - 3.51e12T^{2} \) |
| 41 | \( 1 + 2.14e6T + 7.98e12T^{2} \) |
| 43 | \( 1 - 5.92e6T + 1.16e13T^{2} \) |
| 47 | \( 1 + 7.62e6iT - 2.38e13T^{2} \) |
| 53 | \( 1 + 8.24e5iT - 6.22e13T^{2} \) |
| 59 | \( 1 - 3.72e6T + 1.46e14T^{2} \) |
| 61 | \( 1 + 1.47e7iT - 1.91e14T^{2} \) |
| 67 | \( 1 - 1.52e7T + 4.06e14T^{2} \) |
| 71 | \( 1 + 1.19e6iT - 6.45e14T^{2} \) |
| 73 | \( 1 - 5.72e6T + 8.06e14T^{2} \) |
| 79 | \( 1 + 3.59e7iT - 1.51e15T^{2} \) |
| 83 | \( 1 + 5.19e7T + 2.25e15T^{2} \) |
| 89 | \( 1 - 8.33e7T + 3.93e15T^{2} \) |
| 97 | \( 1 - 1.20e8T + 7.83e15T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14115283883927984382273480117, −9.155594289049303130613546422172, −8.686456696685870542381398635751, −7.920605150266134362998955535969, −6.55309496434093679326830853831, −5.30425914898860694188692483347, −4.12355516509039713275897009304, −3.08374938545122487385277090280, −1.90186708110968167395295728359, −0.808114325288318533759829188843,
1.11176050933930249639621452778, 2.35925489140552353143860657980, 3.41131359698592326808352819285, 4.05852143827125777099968885180, 5.87897732947777698555256038443, 7.07252649877605290707700965550, 7.66263538649456051153719827964, 8.897699124783321963375634924442, 9.576107827797843210364608466553, 10.63036064457540412306469278380