Properties

Label 2-2e8-1.1-c3-0-21
Degree $2$
Conductor $256$
Sign $-1$
Analytic cond. $15.1044$
Root an. cond. $3.88644$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s − 12·5-s − 32·7-s + 37·9-s − 8·11-s + 20·13-s − 96·15-s − 98·17-s − 88·19-s − 256·21-s + 32·23-s + 19·25-s + 80·27-s − 172·29-s + 256·31-s − 64·33-s + 384·35-s − 92·37-s + 160·39-s + 102·41-s − 296·43-s − 444·45-s + 320·47-s + 681·49-s − 784·51-s − 76·53-s + 96·55-s + ⋯
L(s)  = 1  + 1.53·3-s − 1.07·5-s − 1.72·7-s + 1.37·9-s − 0.219·11-s + 0.426·13-s − 1.65·15-s − 1.39·17-s − 1.06·19-s − 2.66·21-s + 0.290·23-s + 0.151·25-s + 0.570·27-s − 1.10·29-s + 1.48·31-s − 0.337·33-s + 1.85·35-s − 0.408·37-s + 0.656·39-s + 0.388·41-s − 1.04·43-s − 1.47·45-s + 0.993·47-s + 1.98·49-s − 2.15·51-s − 0.196·53-s + 0.235·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-1$
Analytic conductor: \(15.1044\)
Root analytic conductor: \(3.88644\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 256,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
5 \( 1 + 12 T + p^{3} T^{2} \)
7 \( 1 + 32 T + p^{3} T^{2} \)
11 \( 1 + 8 T + p^{3} T^{2} \)
13 \( 1 - 20 T + p^{3} T^{2} \)
17 \( 1 + 98 T + p^{3} T^{2} \)
19 \( 1 + 88 T + p^{3} T^{2} \)
23 \( 1 - 32 T + p^{3} T^{2} \)
29 \( 1 + 172 T + p^{3} T^{2} \)
31 \( 1 - 256 T + p^{3} T^{2} \)
37 \( 1 + 92 T + p^{3} T^{2} \)
41 \( 1 - 102 T + p^{3} T^{2} \)
43 \( 1 + 296 T + p^{3} T^{2} \)
47 \( 1 - 320 T + p^{3} T^{2} \)
53 \( 1 + 76 T + p^{3} T^{2} \)
59 \( 1 - 408 T + p^{3} T^{2} \)
61 \( 1 + 636 T + p^{3} T^{2} \)
67 \( 1 - 552 T + p^{3} T^{2} \)
71 \( 1 + 416 T + p^{3} T^{2} \)
73 \( 1 - 138 T + p^{3} T^{2} \)
79 \( 1 - 64 T + p^{3} T^{2} \)
83 \( 1 - 392 T + p^{3} T^{2} \)
89 \( 1 + 582 T + p^{3} T^{2} \)
97 \( 1 - 238 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.00424551040880696546651053123, −9.889264219654524422736722071666, −8.978913783491527809837262997417, −8.347715054493995942484846769909, −7.25699648671309243965857937439, −6.35957109580888645021585828402, −4.21738485745119910644235562172, −3.46965481684877858922540241781, −2.45364195143905733044109761993, 0, 2.45364195143905733044109761993, 3.46965481684877858922540241781, 4.21738485745119910644235562172, 6.35957109580888645021585828402, 7.25699648671309243965857937439, 8.347715054493995942484846769909, 8.978913783491527809837262997417, 9.889264219654524422736722071666, 11.00424551040880696546651053123

Graph of the $Z$-function along the critical line