Properties

Label 2-2e8-1.1-c11-0-5
Degree $2$
Conductor $256$
Sign $1$
Analytic cond. $196.695$
Root an. cond. $14.0248$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 450·3-s − 1.07e4·5-s − 2.14e4·7-s + 2.53e4·9-s + 1.59e5·11-s + 2.43e6·13-s + 4.82e6·15-s − 6.18e6·17-s − 1.31e7·19-s + 9.64e6·21-s + 2.89e7·23-s + 6.60e7·25-s + 6.83e7·27-s − 7.52e7·29-s − 8.78e7·31-s − 7.17e7·33-s + 2.29e8·35-s − 4.69e8·37-s − 1.09e9·39-s − 4.48e8·41-s − 1.58e9·43-s − 2.71e8·45-s − 2.89e9·47-s − 1.51e9·49-s + 2.78e9·51-s + 2.53e9·53-s − 1.70e9·55-s + ⋯
L(s)  = 1  − 1.06·3-s − 1.53·5-s − 0.482·7-s + 0.143·9-s + 0.298·11-s + 1.81·13-s + 1.63·15-s − 1.05·17-s − 1.21·19-s + 0.515·21-s + 0.936·23-s + 1.35·25-s + 0.916·27-s − 0.681·29-s − 0.551·31-s − 0.319·33-s + 0.739·35-s − 1.11·37-s − 1.94·39-s − 0.604·41-s − 1.64·43-s − 0.219·45-s − 1.84·47-s − 0.767·49-s + 1.13·51-s + 0.833·53-s − 0.457·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(196.695\)
Root analytic conductor: \(14.0248\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.09398367369\)
\(L(\frac12)\) \(\approx\) \(0.09398367369\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 450T + 1.77e5T^{2} \)
5 \( 1 + 1.07e4T + 4.88e7T^{2} \)
7 \( 1 + 2.14e4T + 1.97e9T^{2} \)
11 \( 1 - 1.59e5T + 2.85e11T^{2} \)
13 \( 1 - 2.43e6T + 1.79e12T^{2} \)
17 \( 1 + 6.18e6T + 3.42e13T^{2} \)
19 \( 1 + 1.31e7T + 1.16e14T^{2} \)
23 \( 1 - 2.89e7T + 9.52e14T^{2} \)
29 \( 1 + 7.52e7T + 1.22e16T^{2} \)
31 \( 1 + 8.78e7T + 2.54e16T^{2} \)
37 \( 1 + 4.69e8T + 1.77e17T^{2} \)
41 \( 1 + 4.48e8T + 5.50e17T^{2} \)
43 \( 1 + 1.58e9T + 9.29e17T^{2} \)
47 \( 1 + 2.89e9T + 2.47e18T^{2} \)
53 \( 1 - 2.53e9T + 9.26e18T^{2} \)
59 \( 1 + 2.23e9T + 3.01e19T^{2} \)
61 \( 1 - 1.61e9T + 4.35e19T^{2} \)
67 \( 1 - 7.00e9T + 1.22e20T^{2} \)
71 \( 1 + 1.98e10T + 2.31e20T^{2} \)
73 \( 1 - 8.21e9T + 3.13e20T^{2} \)
79 \( 1 + 3.76e10T + 7.47e20T^{2} \)
83 \( 1 - 5.92e10T + 1.28e21T^{2} \)
89 \( 1 + 5.32e10T + 2.77e21T^{2} \)
97 \( 1 + 9.64e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51848759143142755221531414112, −8.847836711662485063661641631808, −8.316154500150022736547104663884, −6.84135921046674616950807118262, −6.38442197080959004265227389036, −5.08671847820636067343274967734, −4.02424850828909695486724847200, −3.29415506683587042369313918307, −1.44694273136514278235913616323, −0.14255956118450369051984505941, 0.14255956118450369051984505941, 1.44694273136514278235913616323, 3.29415506683587042369313918307, 4.02424850828909695486724847200, 5.08671847820636067343274967734, 6.38442197080959004265227389036, 6.84135921046674616950807118262, 8.316154500150022736547104663884, 8.847836711662485063661641631808, 10.51848759143142755221531414112

Graph of the $Z$-function along the critical line