Properties

Label 2-2e8-1.1-c11-0-21
Degree $2$
Conductor $256$
Sign $-1$
Analytic cond. $196.695$
Root an. cond. $14.0248$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 329.·3-s − 1.22e4·5-s − 8.71e4·7-s − 6.83e4·9-s + 3.43e5·11-s − 7.74e5·13-s + 4.02e6·15-s − 2.60e6·17-s − 1.33e7·19-s + 2.87e7·21-s − 4.56e7·23-s + 1.00e8·25-s + 8.09e7·27-s − 1.15e8·29-s − 3.59e7·31-s − 1.13e8·33-s + 1.06e9·35-s + 3.36e8·37-s + 2.55e8·39-s + 5.13e8·41-s + 4.70e8·43-s + 8.35e8·45-s + 2.11e9·47-s + 5.62e9·49-s + 8.59e8·51-s − 4.25e9·53-s − 4.19e9·55-s + ⋯
L(s)  = 1  − 0.783·3-s − 1.74·5-s − 1.96·7-s − 0.385·9-s + 0.643·11-s − 0.578·13-s + 1.36·15-s − 0.445·17-s − 1.23·19-s + 1.53·21-s − 1.47·23-s + 2.05·25-s + 1.08·27-s − 1.04·29-s − 0.225·31-s − 0.504·33-s + 3.42·35-s + 0.798·37-s + 0.453·39-s + 0.692·41-s + 0.487·43-s + 0.674·45-s + 1.34·47-s + 2.84·49-s + 0.349·51-s − 1.39·53-s − 1.12·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $-1$
Analytic conductor: \(196.695\)
Root analytic conductor: \(14.0248\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 256,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 329.T + 1.77e5T^{2} \)
5 \( 1 + 1.22e4T + 4.88e7T^{2} \)
7 \( 1 + 8.71e4T + 1.97e9T^{2} \)
11 \( 1 - 3.43e5T + 2.85e11T^{2} \)
13 \( 1 + 7.74e5T + 1.79e12T^{2} \)
17 \( 1 + 2.60e6T + 3.42e13T^{2} \)
19 \( 1 + 1.33e7T + 1.16e14T^{2} \)
23 \( 1 + 4.56e7T + 9.52e14T^{2} \)
29 \( 1 + 1.15e8T + 1.22e16T^{2} \)
31 \( 1 + 3.59e7T + 2.54e16T^{2} \)
37 \( 1 - 3.36e8T + 1.77e17T^{2} \)
41 \( 1 - 5.13e8T + 5.50e17T^{2} \)
43 \( 1 - 4.70e8T + 9.29e17T^{2} \)
47 \( 1 - 2.11e9T + 2.47e18T^{2} \)
53 \( 1 + 4.25e9T + 9.26e18T^{2} \)
59 \( 1 + 3.15e8T + 3.01e19T^{2} \)
61 \( 1 + 4.85e8T + 4.35e19T^{2} \)
67 \( 1 + 4.92e9T + 1.22e20T^{2} \)
71 \( 1 - 2.43e10T + 2.31e20T^{2} \)
73 \( 1 - 1.87e10T + 3.13e20T^{2} \)
79 \( 1 + 2.54e10T + 7.47e20T^{2} \)
83 \( 1 + 4.47e10T + 1.28e21T^{2} \)
89 \( 1 + 7.21e10T + 2.77e21T^{2} \)
97 \( 1 + 3.03e9T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.626453697772656212300832050738, −8.666521554647632884672952890837, −7.50832516818348302254873783486, −6.59718250408551469537559113821, −5.90508167937851004028900969296, −4.30398894326298705776324897931, −3.71386436931235298415144859992, −2.59735018216116972080323646931, −0.50792440704267187784165607453, 0, 0.50792440704267187784165607453, 2.59735018216116972080323646931, 3.71386436931235298415144859992, 4.30398894326298705776324897931, 5.90508167937851004028900969296, 6.59718250408551469537559113821, 7.50832516818348302254873783486, 8.666521554647632884672952890837, 9.626453697772656212300832050738

Graph of the $Z$-function along the critical line