L(s) = 1 | − 2·3-s + 9-s − 6·11-s − 6·17-s − 2·19-s − 5·25-s + 4·27-s + 12·33-s + 6·41-s + 10·43-s − 7·49-s + 12·51-s + 4·57-s − 6·59-s + 14·67-s − 2·73-s + 10·75-s − 11·81-s − 18·83-s − 18·89-s + 10·97-s − 6·99-s − 6·107-s + 18·113-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/3·9-s − 1.80·11-s − 1.45·17-s − 0.458·19-s − 25-s + 0.769·27-s + 2.08·33-s + 0.937·41-s + 1.52·43-s − 49-s + 1.68·51-s + 0.529·57-s − 0.781·59-s + 1.71·67-s − 0.234·73-s + 1.15·75-s − 1.22·81-s − 1.97·83-s − 1.90·89-s + 1.01·97-s − 0.603·99-s − 0.580·107-s + 1.69·113-s + ⋯ |
Λ(s)=(=(256s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(256s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+2T+pT2 |
| 5 | 1+pT2 |
| 7 | 1+pT2 |
| 11 | 1+6T+pT2 |
| 13 | 1+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+pT2 |
| 31 | 1+pT2 |
| 37 | 1+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−10T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+pT2 |
| 67 | 1−14T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+18T+pT2 |
| 89 | 1+18T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.26097531340688560390760400117, −10.88783381933864566755233769368, −9.891997921642981576990976420061, −8.559961689771162774439116698021, −7.49638267192940041493128754308, −6.29051795613585298614624812000, −5.43412469058090981748265870176, −4.43148007247498493089277458199, −2.49619173311123854201331757855, 0,
2.49619173311123854201331757855, 4.43148007247498493089277458199, 5.43412469058090981748265870176, 6.29051795613585298614624812000, 7.49638267192940041493128754308, 8.559961689771162774439116698021, 9.891997921642981576990976420061, 10.88783381933864566755233769368, 11.26097531340688560390760400117