L(s) = 1 | + 8i·3-s − 12i·5-s − 32·7-s − 37·9-s + 8i·11-s − 20i·13-s + 96·15-s − 98·17-s − 88i·19-s − 256i·21-s + 32·23-s − 19·25-s − 80i·27-s + 172i·29-s − 256·31-s + ⋯ |
L(s) = 1 | + 1.53i·3-s − 1.07i·5-s − 1.72·7-s − 1.37·9-s + 0.219i·11-s − 0.426i·13-s + 1.65·15-s − 1.39·17-s − 1.06i·19-s − 2.66i·21-s + 0.290·23-s − 0.151·25-s − 0.570i·27-s + 1.10i·29-s − 1.48·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 8iT - 27T^{2} \) |
| 5 | \( 1 + 12iT - 125T^{2} \) |
| 7 | \( 1 + 32T + 343T^{2} \) |
| 11 | \( 1 - 8iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 20iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 98T + 4.91e3T^{2} \) |
| 19 | \( 1 + 88iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 32T + 1.21e4T^{2} \) |
| 29 | \( 1 - 172iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 256T + 2.97e4T^{2} \) |
| 37 | \( 1 + 92iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 102T + 6.89e4T^{2} \) |
| 43 | \( 1 - 296iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 320T + 1.03e5T^{2} \) |
| 53 | \( 1 + 76iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 408iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 636iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 552iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 416T + 3.57e5T^{2} \) |
| 73 | \( 1 + 138T + 3.89e5T^{2} \) |
| 79 | \( 1 + 64T + 4.93e5T^{2} \) |
| 83 | \( 1 - 392iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 582T + 7.04e5T^{2} \) |
| 97 | \( 1 - 238T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.78634401478974716182020570086, −11.20949164116986533597062722664, −10.21450542201675788116760123957, −9.212338049798465062086091506886, −8.903006379956564090130312162996, −6.82132329402451852400860869549, −5.36702368536121864314502922349, −4.35786704626479886346482269382, −3.12876406372654968398368489262, 0,
2.20797048657158391561318135753, 3.46338842835132231093544429303, 6.15864662847546624487554837769, 6.63439182096268572137556698852, 7.48396867514535230660036209520, 8.953014507280457733055146880209, 10.20760603513653161292808924193, 11.37923953594496628618316219292, 12.45092757056855816104567684050