L(s) = 1 | − 4i·5-s + 27·9-s − 92i·13-s + 94·17-s + 109·25-s − 284i·29-s + 396i·37-s − 230·41-s − 108i·45-s − 343·49-s + 572i·53-s + 468i·61-s − 368·65-s − 1.09e3·73-s + 729·81-s + ⋯ |
L(s) = 1 | − 0.357i·5-s + 9-s − 1.96i·13-s + 1.34·17-s + 0.871·25-s − 1.81i·29-s + 1.75i·37-s − 0.876·41-s − 0.357i·45-s − 49-s + 1.48i·53-s + 0.982i·61-s − 0.702·65-s − 1.76·73-s + 0.999·81-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.707+0.707i)Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), 0.707+0.707i)
|
Particular Values
L(2) |
≈ |
1.57612−0.652850i |
L(21) |
≈ |
1.57612−0.652850i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−27T2 |
| 5 | 1+4iT−125T2 |
| 7 | 1+343T2 |
| 11 | 1−1.33e3T2 |
| 13 | 1+92iT−2.19e3T2 |
| 17 | 1−94T+4.91e3T2 |
| 19 | 1−6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1+284iT−2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1−396iT−5.06e4T2 |
| 41 | 1+230T+6.89e4T2 |
| 43 | 1−7.95e4T2 |
| 47 | 1+1.03e5T2 |
| 53 | 1−572iT−1.48e5T2 |
| 59 | 1−2.05e5T2 |
| 61 | 1−468iT−2.26e5T2 |
| 67 | 1−3.00e5T2 |
| 71 | 1+3.57e5T2 |
| 73 | 1+1.09e3T+3.89e5T2 |
| 79 | 1+4.93e5T2 |
| 83 | 1−5.71e5T2 |
| 89 | 1−1.67e3T+7.04e5T2 |
| 97 | 1+594T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.78484732429561978649617370521, −11.90764113632520561511652251883, −10.40303101307729163173774827611, −9.852509159261334332860912531266, −8.309045790252605057850777275456, −7.48428172509871663596900133783, −5.94473080992444743154752892682, −4.74578903472573108525590239224, −3.15780485715801365597521995324, −1.02517492739886578989439019968,
1.65573843803848776582738571451, 3.60300395994520040456512855161, 4.94421065723907476703441997808, 6.60777374400933069046152240068, 7.36912480561218050578042127831, 8.896593904414148534767087127391, 9.867588944926950366979321077115, 10.91463585366786182503598448256, 12.02125191394609853393009838453, 12.90736782961264201904883385231