L(s) = 1 | − 4i·5-s + 27·9-s − 92i·13-s + 94·17-s + 109·25-s − 284i·29-s + 396i·37-s − 230·41-s − 108i·45-s − 343·49-s + 572i·53-s + 468i·61-s − 368·65-s − 1.09e3·73-s + 729·81-s + ⋯ |
L(s) = 1 | − 0.357i·5-s + 9-s − 1.96i·13-s + 1.34·17-s + 0.871·25-s − 1.81i·29-s + 1.75i·37-s − 0.876·41-s − 0.357i·45-s − 49-s + 1.48i·53-s + 0.982i·61-s − 0.702·65-s − 1.76·73-s + 0.999·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 128 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.57612 - 0.652850i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57612 - 0.652850i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 27T^{2} \) |
| 5 | \( 1 + 4iT - 125T^{2} \) |
| 7 | \( 1 + 343T^{2} \) |
| 11 | \( 1 - 1.33e3T^{2} \) |
| 13 | \( 1 + 92iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 94T + 4.91e3T^{2} \) |
| 19 | \( 1 - 6.85e3T^{2} \) |
| 23 | \( 1 + 1.21e4T^{2} \) |
| 29 | \( 1 + 284iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 2.97e4T^{2} \) |
| 37 | \( 1 - 396iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 230T + 6.89e4T^{2} \) |
| 43 | \( 1 - 7.95e4T^{2} \) |
| 47 | \( 1 + 1.03e5T^{2} \) |
| 53 | \( 1 - 572iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 2.05e5T^{2} \) |
| 61 | \( 1 - 468iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 + 1.09e3T + 3.89e5T^{2} \) |
| 79 | \( 1 + 4.93e5T^{2} \) |
| 83 | \( 1 - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.67e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 594T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.78484732429561978649617370521, −11.90764113632520561511652251883, −10.40303101307729163173774827611, −9.852509159261334332860912531266, −8.309045790252605057850777275456, −7.48428172509871663596900133783, −5.94473080992444743154752892682, −4.74578903472573108525590239224, −3.15780485715801365597521995324, −1.02517492739886578989439019968,
1.65573843803848776582738571451, 3.60300395994520040456512855161, 4.94421065723907476703441997808, 6.60777374400933069046152240068, 7.36912480561218050578042127831, 8.896593904414148534767087127391, 9.867588944926950366979321077115, 10.91463585366786182503598448256, 12.02125191394609853393009838453, 12.90736782961264201904883385231