L(s) = 1 | + 6.32i·3-s − 17.8i·5-s + 22.6·7-s − 13.0·9-s − 44.2i·11-s + 17.8i·13-s + 113.·15-s + 70·17-s + 82.2i·19-s + 143. i·21-s + 158.·23-s − 195.·25-s + 88.5i·27-s − 125. i·29-s + 280·33-s + ⋯ |
L(s) = 1 | + 1.21i·3-s − 1.59i·5-s + 1.22·7-s − 0.481·9-s − 1.21i·11-s + 0.381i·13-s + 1.94·15-s + 0.998·17-s + 0.992i·19-s + 1.48i·21-s + 1.43·23-s − 1.56·25-s + 0.631i·27-s − 0.801i·29-s + 1.47·33-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
1
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), 1)
|
Particular Values
L(2) |
≈ |
1.86733 |
L(21) |
≈ |
1.86733 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1−6.32iT−27T2 |
| 5 | 1+17.8iT−125T2 |
| 7 | 1−22.6T+343T2 |
| 11 | 1+44.2iT−1.33e3T2 |
| 13 | 1−17.8iT−2.19e3T2 |
| 17 | 1−70T+4.91e3T2 |
| 19 | 1−82.2iT−6.85e3T2 |
| 23 | 1−158.T+1.21e4T2 |
| 29 | 1+125.iT−2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1+375.iT−5.06e4T2 |
| 41 | 1+182T+6.89e4T2 |
| 43 | 1−132.iT−7.95e4T2 |
| 47 | 1+316.T+1.03e5T2 |
| 53 | 1−125.iT−1.48e5T2 |
| 59 | 1−82.2iT−2.05e5T2 |
| 61 | 1−232.iT−2.26e5T2 |
| 67 | 1+221.iT−3.00e5T2 |
| 71 | 1−113.T+3.57e5T2 |
| 73 | 1−910T+3.89e5T2 |
| 79 | 1+678.T+4.93e5T2 |
| 83 | 1−714.iT−5.71e5T2 |
| 89 | 1+546T+7.04e5T2 |
| 97 | 1+490T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.81146615570764980042204002957, −11.70129097841085557184618340537, −10.82447452772290597494812629115, −9.582775670188518468128407765530, −8.730562439661298931194605571401, −7.934803100557612782905712947515, −5.57790411167408496988752528083, −4.87596700180645501866596888215, −3.79679415022851530481763655912, −1.20462889427626375237706648641,
1.58060051165689216341964464967, 2.91788851574558275541648851809, 5.00896723109477689334745653313, 6.74195622579686793005980169405, 7.22580022671621646331627904796, 8.163832432087228483075589236271, 9.949161790519663999598469526772, 10.99007053273707497041302588095, 11.80680442221122422453218854430, 12.87451666649714569753020263937