L(s) = 1 | − 6.32i·3-s − 17.8i·5-s − 22.6·7-s − 13.0·9-s + 44.2i·11-s + 17.8i·13-s − 113.·15-s + 70·17-s − 82.2i·19-s + 143. i·21-s − 158.·23-s − 195.·25-s − 88.5i·27-s − 125. i·29-s + 280·33-s + ⋯ |
L(s) = 1 | − 1.21i·3-s − 1.59i·5-s − 1.22·7-s − 0.481·9-s + 1.21i·11-s + 0.381i·13-s − 1.94·15-s + 0.998·17-s − 0.992i·19-s + 1.48i·21-s − 1.43·23-s − 1.56·25-s − 0.631i·27-s − 0.801i·29-s + 1.47·33-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(128s/2ΓC(s+3/2)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
−1
|
Analytic conductor: |
7.55224 |
Root analytic conductor: |
2.74813 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :3/2), −1)
|
Particular Values
L(2) |
≈ |
−1.03176i |
L(21) |
≈ |
−1.03176i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
good | 3 | 1+6.32iT−27T2 |
| 5 | 1+17.8iT−125T2 |
| 7 | 1+22.6T+343T2 |
| 11 | 1−44.2iT−1.33e3T2 |
| 13 | 1−17.8iT−2.19e3T2 |
| 17 | 1−70T+4.91e3T2 |
| 19 | 1+82.2iT−6.85e3T2 |
| 23 | 1+158.T+1.21e4T2 |
| 29 | 1+125.iT−2.43e4T2 |
| 31 | 1+2.97e4T2 |
| 37 | 1+375.iT−5.06e4T2 |
| 41 | 1+182T+6.89e4T2 |
| 43 | 1+132.iT−7.95e4T2 |
| 47 | 1−316.T+1.03e5T2 |
| 53 | 1−125.iT−1.48e5T2 |
| 59 | 1+82.2iT−2.05e5T2 |
| 61 | 1−232.iT−2.26e5T2 |
| 67 | 1−221.iT−3.00e5T2 |
| 71 | 1+113.T+3.57e5T2 |
| 73 | 1−910T+3.89e5T2 |
| 79 | 1−678.T+4.93e5T2 |
| 83 | 1+714.iT−5.71e5T2 |
| 89 | 1+546T+7.04e5T2 |
| 97 | 1+490T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.40832890459561949129560088840, −12.03581223370086710500124360580, −9.947518204547707664068174667346, −9.179098137008116716528552416196, −7.912089215880290909214454444923, −6.93904359422186065305981708579, −5.71317941436571232451105364763, −4.22586096781788846847025218758, −2.01542653512916390805880529757, −0.52240111283131630807705731875,
3.15706713652802246004115415058, 3.62644832231848533663856288426, 5.70107624936722437144644396843, 6.61216925073114069213018639094, 8.082688529071269249181523519771, 9.694926080346705034738807088031, 10.20748072813757285961104199978, 10.93403934088402298490618874132, 12.19068465020443144312628544609, 13.67899429290759603254175071055