L(s) = 1 | + (1.37 − 0.321i)2-s + (−0.194 − 0.0191i)3-s + (1.79 − 0.884i)4-s + (−0.448 − 0.838i)5-s + (−0.274 + 0.0361i)6-s + (0.394 + 1.98i)7-s + (2.18 − 1.79i)8-s + (−2.90 − 0.577i)9-s + (−0.886 − 1.01i)10-s + (1.96 + 1.61i)11-s + (−0.366 + 0.137i)12-s + (−3.43 − 1.83i)13-s + (1.18 + 2.60i)14-s + (0.0712 + 0.172i)15-s + (2.43 − 3.17i)16-s + (−2.58 + 6.25i)17-s + ⋯ |
L(s) = 1 | + (0.973 − 0.227i)2-s + (−0.112 − 0.0110i)3-s + (0.896 − 0.442i)4-s + (−0.200 − 0.375i)5-s + (−0.112 + 0.0147i)6-s + (0.149 + 0.749i)7-s + (0.773 − 0.634i)8-s + (−0.968 − 0.192i)9-s + (−0.280 − 0.319i)10-s + (0.591 + 0.485i)11-s + (−0.105 + 0.0398i)12-s + (−0.952 − 0.509i)13-s + (0.315 + 0.696i)14-s + (0.0184 + 0.0444i)15-s + (0.608 − 0.793i)16-s + (−0.627 + 1.51i)17-s + ⋯ |
Λ(s)=(=(128s/2ΓC(s)L(s)(0.917+0.398i)Λ(2−s)
Λ(s)=(=(128s/2ΓC(s+1/2)L(s)(0.917+0.398i)Λ(1−s)
Degree: |
2 |
Conductor: |
128
= 27
|
Sign: |
0.917+0.398i
|
Analytic conductor: |
1.02208 |
Root analytic conductor: |
1.01098 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ128(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 128, ( :1/2), 0.917+0.398i)
|
Particular Values
L(1) |
≈ |
1.62901−0.338223i |
L(21) |
≈ |
1.62901−0.338223i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.37+0.321i)T |
good | 3 | 1+(0.194+0.0191i)T+(2.94+0.585i)T2 |
| 5 | 1+(0.448+0.838i)T+(−2.77+4.15i)T2 |
| 7 | 1+(−0.394−1.98i)T+(−6.46+2.67i)T2 |
| 11 | 1+(−1.96−1.61i)T+(2.14+10.7i)T2 |
| 13 | 1+(3.43+1.83i)T+(7.22+10.8i)T2 |
| 17 | 1+(2.58−6.25i)T+(−12.0−12.0i)T2 |
| 19 | 1+(−1.58+0.481i)T+(15.7−10.5i)T2 |
| 23 | 1+(4.28−2.86i)T+(8.80−21.2i)T2 |
| 29 | 1+(3.65+4.45i)T+(−5.65+28.4i)T2 |
| 31 | 1+(1.49−1.49i)T−31iT2 |
| 37 | 1+(−0.443+1.46i)T+(−30.7−20.5i)T2 |
| 41 | 1+(−1.49−2.23i)T+(−15.6+37.8i)T2 |
| 43 | 1+(−10.6+1.05i)T+(42.1−8.38i)T2 |
| 47 | 1+(1.16+0.483i)T+(33.2+33.2i)T2 |
| 53 | 1+(−5.69+6.93i)T+(−10.3−51.9i)T2 |
| 59 | 1+(1.42−0.761i)T+(32.7−49.0i)T2 |
| 61 | 1+(−0.332+3.37i)T+(−59.8−11.9i)T2 |
| 67 | 1+(0.689−6.99i)T+(−65.7−13.0i)T2 |
| 71 | 1+(7.67−1.52i)T+(65.5−27.1i)T2 |
| 73 | 1+(−0.201+1.01i)T+(−67.4−27.9i)T2 |
| 79 | 1+(−13.7+5.68i)T+(55.8−55.8i)T2 |
| 83 | 1+(4.86+16.0i)T+(−69.0+46.1i)T2 |
| 89 | 1+(−3.43−2.29i)T+(34.0+82.2i)T2 |
| 97 | 1+(2.61−2.61i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.09320794422319658183193402657, −12.20162109319998872676656227536, −11.66857183307663438416410174160, −10.43516904324412324326654474066, −9.113892659434563214486975913960, −7.80664412898919681221695353818, −6.26876987761105405330152098634, −5.35599550690896296346651729793, −4.00648795899222448798296577920, −2.31774303233298479256069002590,
2.74807047629660629955399762809, 4.20437919970744213361785557843, 5.46502652224407135104389729903, 6.81968061437001885752769531783, 7.61723990626742097614671714435, 9.157673383030713216975799955780, 10.81356096432277234563760535091, 11.44858832526688242639254044723, 12.34734421677500706895817564684, 13.88652973577278203056725529470