Properties

Label 2-2e6-64.37-c1-0-4
Degree $2$
Conductor $64$
Sign $0.975 + 0.218i$
Analytic cond. $0.511042$
Root an. cond. $0.714872$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.919 + 1.07i)2-s + (1.25 − 1.87i)3-s + (−0.309 − 1.97i)4-s + (0.509 − 2.56i)5-s + (0.862 + 3.06i)6-s + (−1.78 + 4.31i)7-s + (2.40 + 1.48i)8-s + (−0.792 − 1.91i)9-s + (2.28 + 2.90i)10-s + (−0.337 + 0.225i)11-s + (−4.08 − 1.89i)12-s + (0.558 + 2.80i)13-s + (−2.99 − 5.88i)14-s + (−4.16 − 4.16i)15-s + (−3.80 + 1.22i)16-s + (2.50 − 2.50i)17-s + ⋯
L(s)  = 1  + (−0.650 + 0.759i)2-s + (0.722 − 1.08i)3-s + (−0.154 − 0.987i)4-s + (0.228 − 1.14i)5-s + (0.351 + 1.25i)6-s + (−0.675 + 1.63i)7-s + (0.851 + 0.524i)8-s + (−0.264 − 0.637i)9-s + (0.722 + 0.918i)10-s + (−0.101 + 0.0679i)11-s + (−1.17 − 0.546i)12-s + (0.154 + 0.778i)13-s + (−0.799 − 1.57i)14-s + (−1.07 − 1.07i)15-s + (−0.951 + 0.306i)16-s + (0.607 − 0.607i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64\)    =    \(2^{6}\)
Sign: $0.975 + 0.218i$
Analytic conductor: \(0.511042\)
Root analytic conductor: \(0.714872\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{64} (37, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 64,\ (\ :1/2),\ 0.975 + 0.218i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.782809 - 0.0866802i\)
\(L(\frac12)\) \(\approx\) \(0.782809 - 0.0866802i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.919 - 1.07i)T \)
good3 \( 1 + (-1.25 + 1.87i)T + (-1.14 - 2.77i)T^{2} \)
5 \( 1 + (-0.509 + 2.56i)T + (-4.61 - 1.91i)T^{2} \)
7 \( 1 + (1.78 - 4.31i)T + (-4.94 - 4.94i)T^{2} \)
11 \( 1 + (0.337 - 0.225i)T + (4.20 - 10.1i)T^{2} \)
13 \( 1 + (-0.558 - 2.80i)T + (-12.0 + 4.97i)T^{2} \)
17 \( 1 + (-2.50 + 2.50i)T - 17iT^{2} \)
19 \( 1 + (2.54 - 0.506i)T + (17.5 - 7.27i)T^{2} \)
23 \( 1 + (2.78 - 1.15i)T + (16.2 - 16.2i)T^{2} \)
29 \( 1 + (4.40 + 2.94i)T + (11.0 + 26.7i)T^{2} \)
31 \( 1 + 0.289iT - 31T^{2} \)
37 \( 1 + (-1.93 - 0.384i)T + (34.1 + 14.1i)T^{2} \)
41 \( 1 + (5.97 - 2.47i)T + (28.9 - 28.9i)T^{2} \)
43 \( 1 + (3.47 + 5.19i)T + (-16.4 + 39.7i)T^{2} \)
47 \( 1 + (-0.140 + 0.140i)T - 47iT^{2} \)
53 \( 1 + (-0.438 + 0.292i)T + (20.2 - 48.9i)T^{2} \)
59 \( 1 + (1.05 - 5.31i)T + (-54.5 - 22.5i)T^{2} \)
61 \( 1 + (-4.77 + 7.14i)T + (-23.3 - 56.3i)T^{2} \)
67 \( 1 + (-2.53 + 3.79i)T + (-25.6 - 61.8i)T^{2} \)
71 \( 1 + (-5.35 + 12.9i)T + (-50.2 - 50.2i)T^{2} \)
73 \( 1 + (-5.89 - 14.2i)T + (-51.6 + 51.6i)T^{2} \)
79 \( 1 + (4.17 + 4.17i)T + 79iT^{2} \)
83 \( 1 + (-7.83 + 1.55i)T + (76.6 - 31.7i)T^{2} \)
89 \( 1 + (6.46 + 2.67i)T + (62.9 + 62.9i)T^{2} \)
97 \( 1 - 16.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01570745655425118418065280662, −13.78956572482413340327137592073, −12.87379870985761544182466941938, −11.89983134196355030768853233974, −9.598796566554307646435698037630, −8.866735456824622024452154938626, −8.040172854184342791796177071719, −6.55049579093794733146849796793, −5.33588293410147693460016179644, −2.00280200121863803546582611119, 3.13888990244719961567125370948, 3.96052881029724691585998125441, 6.86759730664273071668926919853, 8.162625066668693067536506975415, 9.728680691988439321591552040087, 10.34507286150409297370477973164, 10.88237025832782793413989891083, 12.85431854057649673152525447899, 13.92368921238175848383876566116, 14.90951947846076217309001153680

Graph of the $Z$-function along the critical line