L(s) = 1 | + (−0.919 + 1.07i)2-s + (1.25 − 1.87i)3-s + (−0.309 − 1.97i)4-s + (0.509 − 2.56i)5-s + (0.862 + 3.06i)6-s + (−1.78 + 4.31i)7-s + (2.40 + 1.48i)8-s + (−0.792 − 1.91i)9-s + (2.28 + 2.90i)10-s + (−0.337 + 0.225i)11-s + (−4.08 − 1.89i)12-s + (0.558 + 2.80i)13-s + (−2.99 − 5.88i)14-s + (−4.16 − 4.16i)15-s + (−3.80 + 1.22i)16-s + (2.50 − 2.50i)17-s + ⋯ |
L(s) = 1 | + (−0.650 + 0.759i)2-s + (0.722 − 1.08i)3-s + (−0.154 − 0.987i)4-s + (0.228 − 1.14i)5-s + (0.351 + 1.25i)6-s + (−0.675 + 1.63i)7-s + (0.851 + 0.524i)8-s + (−0.264 − 0.637i)9-s + (0.722 + 0.918i)10-s + (−0.101 + 0.0679i)11-s + (−1.17 − 0.546i)12-s + (0.154 + 0.778i)13-s + (−0.799 − 1.57i)14-s + (−1.07 − 1.07i)15-s + (−0.951 + 0.306i)16-s + (0.607 − 0.607i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.782809 - 0.0866802i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.782809 - 0.0866802i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.919 - 1.07i)T \) |
good | 3 | \( 1 + (-1.25 + 1.87i)T + (-1.14 - 2.77i)T^{2} \) |
| 5 | \( 1 + (-0.509 + 2.56i)T + (-4.61 - 1.91i)T^{2} \) |
| 7 | \( 1 + (1.78 - 4.31i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (0.337 - 0.225i)T + (4.20 - 10.1i)T^{2} \) |
| 13 | \( 1 + (-0.558 - 2.80i)T + (-12.0 + 4.97i)T^{2} \) |
| 17 | \( 1 + (-2.50 + 2.50i)T - 17iT^{2} \) |
| 19 | \( 1 + (2.54 - 0.506i)T + (17.5 - 7.27i)T^{2} \) |
| 23 | \( 1 + (2.78 - 1.15i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (4.40 + 2.94i)T + (11.0 + 26.7i)T^{2} \) |
| 31 | \( 1 + 0.289iT - 31T^{2} \) |
| 37 | \( 1 + (-1.93 - 0.384i)T + (34.1 + 14.1i)T^{2} \) |
| 41 | \( 1 + (5.97 - 2.47i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (3.47 + 5.19i)T + (-16.4 + 39.7i)T^{2} \) |
| 47 | \( 1 + (-0.140 + 0.140i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.438 + 0.292i)T + (20.2 - 48.9i)T^{2} \) |
| 59 | \( 1 + (1.05 - 5.31i)T + (-54.5 - 22.5i)T^{2} \) |
| 61 | \( 1 + (-4.77 + 7.14i)T + (-23.3 - 56.3i)T^{2} \) |
| 67 | \( 1 + (-2.53 + 3.79i)T + (-25.6 - 61.8i)T^{2} \) |
| 71 | \( 1 + (-5.35 + 12.9i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-5.89 - 14.2i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (4.17 + 4.17i)T + 79iT^{2} \) |
| 83 | \( 1 + (-7.83 + 1.55i)T + (76.6 - 31.7i)T^{2} \) |
| 89 | \( 1 + (6.46 + 2.67i)T + (62.9 + 62.9i)T^{2} \) |
| 97 | \( 1 - 16.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.01570745655425118418065280662, −13.78956572482413340327137592073, −12.87379870985761544182466941938, −11.89983134196355030768853233974, −9.598796566554307646435698037630, −8.866735456824622024452154938626, −8.040172854184342791796177071719, −6.55049579093794733146849796793, −5.33588293410147693460016179644, −2.00280200121863803546582611119,
3.13888990244719961567125370948, 3.96052881029724691585998125441, 6.86759730664273071668926919853, 8.162625066668693067536506975415, 9.728680691988439321591552040087, 10.34507286150409297370477973164, 10.88237025832782793413989891083, 12.85431854057649673152525447899, 13.92368921238175848383876566116, 14.90951947846076217309001153680