| L(s) = 1 | + (−1.09e5 − 1.09e5i)3-s + (−1.97e7 + 1.97e7i)5-s − 1.02e9i·7-s + 1.36e10i·9-s + (7.32e10 − 7.32e10i)11-s + (−4.28e11 − 4.28e11i)13-s + 4.32e12·15-s + 6.62e12·17-s + (1.48e13 + 1.48e13i)19-s + (−1.12e14 + 1.12e14i)21-s − 2.73e14i·23-s − 3.01e14i·25-s + (3.46e14 − 3.46e14i)27-s + (1.70e15 + 1.70e15i)29-s − 1.42e15·31-s + ⋯ |
| L(s) = 1 | + (−1.07 − 1.07i)3-s + (−0.903 + 0.903i)5-s − 1.36i·7-s + 1.30i·9-s + (0.851 − 0.851i)11-s + (−0.861 − 0.861i)13-s + 1.93·15-s + 0.796·17-s + (0.557 + 0.557i)19-s + (−1.46 + 1.46i)21-s − 1.37i·23-s − 0.632i·25-s + (0.323 − 0.323i)27-s + (0.754 + 0.754i)29-s − 0.311·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.788 + 0.615i)\, \overline{\Lambda}(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & (0.788 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(11)\) |
\(\approx\) |
\(0.9049095791\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9049095791\) |
| \(L(\frac{23}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| good | 3 | \( 1 + (1.09e5 + 1.09e5i)T + 1.04e10iT^{2} \) |
| 5 | \( 1 + (1.97e7 - 1.97e7i)T - 4.76e14iT^{2} \) |
| 7 | \( 1 + 1.02e9iT - 5.58e17T^{2} \) |
| 11 | \( 1 + (-7.32e10 + 7.32e10i)T - 7.40e21iT^{2} \) |
| 13 | \( 1 + (4.28e11 + 4.28e11i)T + 2.47e23iT^{2} \) |
| 17 | \( 1 - 6.62e12T + 6.90e25T^{2} \) |
| 19 | \( 1 + (-1.48e13 - 1.48e13i)T + 7.14e26iT^{2} \) |
| 23 | \( 1 + 2.73e14iT - 3.94e28T^{2} \) |
| 29 | \( 1 + (-1.70e15 - 1.70e15i)T + 5.13e30iT^{2} \) |
| 31 | \( 1 + 1.42e15T + 2.08e31T^{2} \) |
| 37 | \( 1 + (9.05e15 - 9.05e15i)T - 8.55e32iT^{2} \) |
| 41 | \( 1 + 5.53e16iT - 7.38e33T^{2} \) |
| 43 | \( 1 + (-8.48e16 + 8.48e16i)T - 2.00e34iT^{2} \) |
| 47 | \( 1 + 5.38e17T + 1.30e35T^{2} \) |
| 53 | \( 1 + (6.11e17 - 6.11e17i)T - 1.62e36iT^{2} \) |
| 59 | \( 1 + (5.01e18 - 5.01e18i)T - 1.54e37iT^{2} \) |
| 61 | \( 1 + (-7.57e18 - 7.57e18i)T + 3.10e37iT^{2} \) |
| 67 | \( 1 + (-1.45e19 - 1.45e19i)T + 2.22e38iT^{2} \) |
| 71 | \( 1 - 3.61e19iT - 7.52e38T^{2} \) |
| 73 | \( 1 - 1.74e19iT - 1.34e39T^{2} \) |
| 79 | \( 1 + 9.41e18T + 7.08e39T^{2} \) |
| 83 | \( 1 + (-1.22e20 - 1.22e20i)T + 1.99e40iT^{2} \) |
| 89 | \( 1 - 4.34e20iT - 8.65e40T^{2} \) |
| 97 | \( 1 + 4.29e20T + 5.27e41T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93741647095069390171091056403, −10.24335909052124668390310372775, −8.107695608409419069135268252948, −7.22097354831048361321496083800, −6.72298284754645623078445112752, −5.49094276567862070308124626652, −3.99294122882276598297267398472, −2.98558089424756271550095832779, −1.15321587223904079739455286147, −0.61631046027350591499038414702,
0.37044949649305891067220546592, 1.79001174273617372461025966119, 3.51825285881858951722084306098, 4.71590691210196778274339048403, 5.06257951903042906870635592083, 6.34083955245928145477076464067, 7.84681790035594903183819046536, 9.327907747401184060349901941577, 9.628233188066047873244409303867, 11.47111457847857672069342072657