| L(s) = 1 | + (−1.36e5 − 1.36e5i)3-s + (−8.67e6 + 8.67e6i)5-s + 5.12e8i·7-s + 2.66e10i·9-s + (1.13e10 − 1.13e10i)11-s + (2.78e11 + 2.78e11i)13-s + 2.36e12·15-s + 1.25e13·17-s + (−1.60e13 − 1.60e13i)19-s + (6.97e13 − 6.97e13i)21-s − 2.73e14i·23-s + 3.26e14i·25-s + (2.20e15 − 2.20e15i)27-s + (−9.06e14 − 9.06e14i)29-s + 4.28e15·31-s + ⋯ |
| L(s) = 1 | + (−1.33 − 1.33i)3-s + (−0.397 + 0.397i)5-s + 0.685i·7-s + 2.54i·9-s + (0.131 − 0.131i)11-s + (0.561 + 0.561i)13-s + 1.05·15-s + 1.50·17-s + (−0.599 − 0.599i)19-s + (0.912 − 0.912i)21-s − 1.37i·23-s + 0.684i·25-s + (2.05 − 2.05i)27-s + (−0.400 − 0.400i)29-s + 0.938·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 - 0.646i)\, \overline{\Lambda}(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & (0.762 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(11)\) |
\(\approx\) |
\(0.9619492007\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9619492007\) |
| \(L(\frac{23}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| good | 3 | \( 1 + (1.36e5 + 1.36e5i)T + 1.04e10iT^{2} \) |
| 5 | \( 1 + (8.67e6 - 8.67e6i)T - 4.76e14iT^{2} \) |
| 7 | \( 1 - 5.12e8iT - 5.58e17T^{2} \) |
| 11 | \( 1 + (-1.13e10 + 1.13e10i)T - 7.40e21iT^{2} \) |
| 13 | \( 1 + (-2.78e11 - 2.78e11i)T + 2.47e23iT^{2} \) |
| 17 | \( 1 - 1.25e13T + 6.90e25T^{2} \) |
| 19 | \( 1 + (1.60e13 + 1.60e13i)T + 7.14e26iT^{2} \) |
| 23 | \( 1 + 2.73e14iT - 3.94e28T^{2} \) |
| 29 | \( 1 + (9.06e14 + 9.06e14i)T + 5.13e30iT^{2} \) |
| 31 | \( 1 - 4.28e15T + 2.08e31T^{2} \) |
| 37 | \( 1 + (2.27e16 - 2.27e16i)T - 8.55e32iT^{2} \) |
| 41 | \( 1 - 1.22e17iT - 7.38e33T^{2} \) |
| 43 | \( 1 + (1.04e17 - 1.04e17i)T - 2.00e34iT^{2} \) |
| 47 | \( 1 - 5.24e17T + 1.30e35T^{2} \) |
| 53 | \( 1 + (-7.87e17 + 7.87e17i)T - 1.62e36iT^{2} \) |
| 59 | \( 1 + (3.70e18 - 3.70e18i)T - 1.54e37iT^{2} \) |
| 61 | \( 1 + (2.64e18 + 2.64e18i)T + 3.10e37iT^{2} \) |
| 67 | \( 1 + (5.83e18 + 5.83e18i)T + 2.22e38iT^{2} \) |
| 71 | \( 1 - 2.18e19iT - 7.52e38T^{2} \) |
| 73 | \( 1 + 5.08e19iT - 1.34e39T^{2} \) |
| 79 | \( 1 + 1.22e20T + 7.08e39T^{2} \) |
| 83 | \( 1 + (4.17e18 + 4.17e18i)T + 1.99e40iT^{2} \) |
| 89 | \( 1 + 1.65e19iT - 8.65e40T^{2} \) |
| 97 | \( 1 - 3.10e20T + 5.27e41T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40662209069433237633666287862, −10.35196203326395431283036700841, −8.555397866237176010411093126628, −7.50327848172601122458453230826, −6.51323674919839274772555276274, −5.84163777247163562615390139755, −4.65421799344084077861876245261, −2.88136061873554116670050539124, −1.66944800952410983563717468454, −0.74556107336235377284106083837,
0.34733658933732992185430475903, 1.15837784831174894231530140198, 3.54765096751038087957711268885, 4.06387366004921681166903915497, 5.26072014528474121654896452676, 5.95506802666098264143064641228, 7.41843065148507674670681416105, 8.876926318994387387104371952499, 10.16011023322840085408448522071, 10.56907650705930759251909791885