Properties

Label 2-2e5-32.5-c7-0-16
Degree $2$
Conductor $32$
Sign $0.418 - 0.908i$
Analytic cond. $9.99632$
Root an. cond. $3.16169$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (11.3 − 0.356i)2-s + (27.3 + 66.0i)3-s + (127. − 8.05i)4-s + (250. + 103. i)5-s + (332. + 737. i)6-s + (−662. − 662. i)7-s + (1.44e3 − 136. i)8-s + (−2.06e3 + 2.06e3i)9-s + (2.87e3 + 1.08e3i)10-s + (12.1 − 29.3i)11-s + (4.02e3 + 8.21e3i)12-s + (−7.27e3 + 3.01e3i)13-s + (−7.72e3 − 7.25e3i)14-s + 1.93e4i·15-s + (1.62e4 − 2.05e3i)16-s − 1.47e4i·17-s + ⋯
L(s)  = 1  + (0.999 − 0.0314i)2-s + (0.584 + 1.41i)3-s + (0.998 − 0.0629i)4-s + (0.896 + 0.371i)5-s + (0.629 + 1.39i)6-s + (−0.729 − 0.729i)7-s + (0.995 − 0.0943i)8-s + (−0.945 + 0.945i)9-s + (0.907 + 0.342i)10-s + (0.00275 − 0.00664i)11-s + (0.672 + 1.37i)12-s + (−0.918 + 0.380i)13-s + (−0.752 − 0.706i)14-s + 1.48i·15-s + (0.992 − 0.125i)16-s − 0.726i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.418 - 0.908i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.418 - 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32\)    =    \(2^{5}\)
Sign: $0.418 - 0.908i$
Analytic conductor: \(9.99632\)
Root analytic conductor: \(3.16169\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{32} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 32,\ (\ :7/2),\ 0.418 - 0.908i)\)

Particular Values

\(L(4)\) \(\approx\) \(3.32949 + 2.13219i\)
\(L(\frac12)\) \(\approx\) \(3.32949 + 2.13219i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-11.3 + 0.356i)T \)
good3 \( 1 + (-27.3 - 66.0i)T + (-1.54e3 + 1.54e3i)T^{2} \)
5 \( 1 + (-250. - 103. i)T + (5.52e4 + 5.52e4i)T^{2} \)
7 \( 1 + (662. + 662. i)T + 8.23e5iT^{2} \)
11 \( 1 + (-12.1 + 29.3i)T + (-1.37e7 - 1.37e7i)T^{2} \)
13 \( 1 + (7.27e3 - 3.01e3i)T + (4.43e7 - 4.43e7i)T^{2} \)
17 \( 1 + 1.47e4iT - 4.10e8T^{2} \)
19 \( 1 + (-4.64e4 + 1.92e4i)T + (6.32e8 - 6.32e8i)T^{2} \)
23 \( 1 + (6.78e4 - 6.78e4i)T - 3.40e9iT^{2} \)
29 \( 1 + (5.75e4 + 1.38e5i)T + (-1.21e10 + 1.21e10i)T^{2} \)
31 \( 1 - 1.99e5T + 2.75e10T^{2} \)
37 \( 1 + (3.66e5 + 1.51e5i)T + (6.71e10 + 6.71e10i)T^{2} \)
41 \( 1 + (1.66e5 - 1.66e5i)T - 1.94e11iT^{2} \)
43 \( 1 + (-3.15e5 + 7.62e5i)T + (-1.92e11 - 1.92e11i)T^{2} \)
47 \( 1 - 1.19e5iT - 5.06e11T^{2} \)
53 \( 1 + (2.08e5 - 5.02e5i)T + (-8.30e11 - 8.30e11i)T^{2} \)
59 \( 1 + (-1.20e6 - 4.99e5i)T + (1.75e12 + 1.75e12i)T^{2} \)
61 \( 1 + (-5.31e5 - 1.28e6i)T + (-2.22e12 + 2.22e12i)T^{2} \)
67 \( 1 + (-1.29e6 - 3.12e6i)T + (-4.28e12 + 4.28e12i)T^{2} \)
71 \( 1 + (1.40e6 + 1.40e6i)T + 9.09e12iT^{2} \)
73 \( 1 + (-9.44e5 + 9.44e5i)T - 1.10e13iT^{2} \)
79 \( 1 - 2.52e6iT - 1.92e13T^{2} \)
83 \( 1 + (8.11e6 - 3.36e6i)T + (1.91e13 - 1.91e13i)T^{2} \)
89 \( 1 + (4.96e6 + 4.96e6i)T + 4.42e13iT^{2} \)
97 \( 1 + 1.10e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.44103098995990064199312215307, −13.97461619766189482486125108992, −13.75054490205807750062196586476, −11.72089536635436974797344182137, −10.10195687676007784709212282590, −9.698343170291065976040346566730, −7.16998472188719948473515748057, −5.42710241380221905983118970942, −3.96457243928977119108995419245, −2.67502382285346892855535757062, 1.67439710170534291453282925602, 2.89406199907786041254684015258, 5.55109156993170681597078219367, 6.65761734310604446712027817093, 8.092098040075933070052283662721, 9.879417213785759783196543469521, 12.17871560539241194589882441240, 12.64860521603777476169684627872, 13.69392254318419178253664133988, 14.52640274844390499382563425628

Graph of the $Z$-function along the critical line