Properties

Label 2-2e5-32.19-c8-0-13
Degree $2$
Conductor $32$
Sign $-0.248 + 0.968i$
Analytic cond. $13.0361$
Root an. cond. $3.61055$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−7.10 − 14.3i)2-s + (−91.4 − 37.8i)3-s + (−154. + 203. i)4-s + (833. − 345. i)5-s + (107. + 1.58e3i)6-s + (1.94e3 + 1.94e3i)7-s + (4.02e3 + 772. i)8-s + (2.28e3 + 2.28e3i)9-s + (−1.08e4 − 9.49e3i)10-s + (4.42e3 − 1.83e3i)11-s + (2.18e4 − 1.27e4i)12-s + (1.42e4 + 5.89e3i)13-s + (1.40e4 − 4.16e4i)14-s − 8.93e4·15-s + (−1.75e4 − 6.31e4i)16-s − 9.72e4i·17-s + ⋯
L(s)  = 1  + (−0.444 − 0.895i)2-s + (−1.12 − 0.467i)3-s + (−0.605 + 0.796i)4-s + (1.33 − 0.552i)5-s + (0.0826 + 1.21i)6-s + (0.809 + 0.809i)7-s + (0.982 + 0.188i)8-s + (0.349 + 0.349i)9-s + (−1.08 − 0.949i)10-s + (0.301 − 0.125i)11-s + (1.05 − 0.615i)12-s + (0.498 + 0.206i)13-s + (0.365 − 1.08i)14-s − 1.76·15-s + (−0.267 − 0.963i)16-s − 1.16i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (-0.248 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32\)    =    \(2^{5}\)
Sign: $-0.248 + 0.968i$
Analytic conductor: \(13.0361\)
Root analytic conductor: \(3.61055\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{32} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 32,\ (\ :4),\ -0.248 + 0.968i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.766548 - 0.987736i\)
\(L(\frac12)\) \(\approx\) \(0.766548 - 0.987736i\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (7.10 + 14.3i)T \)
good3 \( 1 + (91.4 + 37.8i)T + (4.63e3 + 4.63e3i)T^{2} \)
5 \( 1 + (-833. + 345. i)T + (2.76e5 - 2.76e5i)T^{2} \)
7 \( 1 + (-1.94e3 - 1.94e3i)T + 5.76e6iT^{2} \)
11 \( 1 + (-4.42e3 + 1.83e3i)T + (1.51e8 - 1.51e8i)T^{2} \)
13 \( 1 + (-1.42e4 - 5.89e3i)T + (5.76e8 + 5.76e8i)T^{2} \)
17 \( 1 + 9.72e4iT - 6.97e9T^{2} \)
19 \( 1 + (8.79e4 - 2.12e5i)T + (-1.20e10 - 1.20e10i)T^{2} \)
23 \( 1 + (-3.28e5 + 3.28e5i)T - 7.83e10iT^{2} \)
29 \( 1 + (-4.05e5 + 9.78e5i)T + (-3.53e11 - 3.53e11i)T^{2} \)
31 \( 1 + 5.75e5iT - 8.52e11T^{2} \)
37 \( 1 + (-2.20e5 + 9.13e4i)T + (2.48e12 - 2.48e12i)T^{2} \)
41 \( 1 + (-1.64e6 - 1.64e6i)T + 7.98e12iT^{2} \)
43 \( 1 + (1.63e6 - 6.75e5i)T + (8.26e12 - 8.26e12i)T^{2} \)
47 \( 1 - 3.69e6T + 2.38e13T^{2} \)
53 \( 1 + (3.96e6 + 9.58e6i)T + (-4.40e13 + 4.40e13i)T^{2} \)
59 \( 1 + (6.46e6 + 1.56e7i)T + (-1.03e14 + 1.03e14i)T^{2} \)
61 \( 1 + (-1.34e6 + 3.24e6i)T + (-1.35e14 - 1.35e14i)T^{2} \)
67 \( 1 + (-7.75e6 - 3.21e6i)T + (2.87e14 + 2.87e14i)T^{2} \)
71 \( 1 + (9.90e6 + 9.90e6i)T + 6.45e14iT^{2} \)
73 \( 1 + (-8.39e6 - 8.39e6i)T + 8.06e14iT^{2} \)
79 \( 1 - 3.71e7T + 1.51e15T^{2} \)
83 \( 1 + (2.60e7 - 6.27e7i)T + (-1.59e15 - 1.59e15i)T^{2} \)
89 \( 1 + (2.14e7 - 2.14e7i)T - 3.93e15iT^{2} \)
97 \( 1 - 7.73e7T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25990417522167204072129075337, −12.97332340499937791366484304672, −12.02625211061005627202221690044, −11.07969854434690798510306679681, −9.644246512508253510960877578358, −8.435875100463474379417403869848, −6.18460673569397767837196094017, −4.95080393293702054296302744327, −2.10381914602104405575040182010, −0.884899706869744202153292522023, 1.24660355634998613271625567975, 4.75318430636017629999437448997, 5.89870994441353404437594014618, 7.00807178325340232794541031869, 8.978928793283270655154704897587, 10.55239919957409537300657507675, 10.85379083303688668176038071242, 13.31141757389087445325599934678, 14.32459986566689142894288164509, 15.50498599884817886369243688247

Graph of the $Z$-function along the critical line