Properties

Label 2-2e5-32.13-c7-0-8
Degree $2$
Conductor $32$
Sign $0.909 - 0.415i$
Analytic cond. $9.99632$
Root an. cond. $3.16169$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.362 − 11.3i)2-s + (−6.67 + 16.1i)3-s + (−127. − 8.20i)4-s + (−71.5 + 29.6i)5-s + (179. + 81.3i)6-s + (108. − 108. i)7-s + (−139. + 1.44e3i)8-s + (1.33e3 + 1.33e3i)9-s + (309. + 820. i)10-s + (1.53e3 + 3.70e3i)11-s + (984. − 2.00e3i)12-s + (2.09e3 + 868. i)13-s + (−1.19e3 − 1.27e3i)14-s − 1.35e3i·15-s + (1.62e4 + 2.09e3i)16-s + 492. i·17-s + ⋯
L(s)  = 1  + (0.0320 − 0.999i)2-s + (−0.142 + 0.344i)3-s + (−0.997 − 0.0640i)4-s + (−0.256 + 0.106i)5-s + (0.339 + 0.153i)6-s + (0.120 − 0.120i)7-s + (−0.0960 + 0.995i)8-s + (0.608 + 0.608i)9-s + (0.0978 + 0.259i)10-s + (0.347 + 0.839i)11-s + (0.164 − 0.334i)12-s + (0.264 + 0.109i)13-s + (−0.116 − 0.123i)14-s − 0.103i·15-s + (0.991 + 0.127i)16-s + 0.0243i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 - 0.415i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.909 - 0.415i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32\)    =    \(2^{5}\)
Sign: $0.909 - 0.415i$
Analytic conductor: \(9.99632\)
Root analytic conductor: \(3.16169\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{32} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 32,\ (\ :7/2),\ 0.909 - 0.415i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.27335 + 0.277253i\)
\(L(\frac12)\) \(\approx\) \(1.27335 + 0.277253i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.362 + 11.3i)T \)
good3 \( 1 + (6.67 - 16.1i)T + (-1.54e3 - 1.54e3i)T^{2} \)
5 \( 1 + (71.5 - 29.6i)T + (5.52e4 - 5.52e4i)T^{2} \)
7 \( 1 + (-108. + 108. i)T - 8.23e5iT^{2} \)
11 \( 1 + (-1.53e3 - 3.70e3i)T + (-1.37e7 + 1.37e7i)T^{2} \)
13 \( 1 + (-2.09e3 - 868. i)T + (4.43e7 + 4.43e7i)T^{2} \)
17 \( 1 - 492. iT - 4.10e8T^{2} \)
19 \( 1 + (-2.59e4 - 1.07e4i)T + (6.32e8 + 6.32e8i)T^{2} \)
23 \( 1 + (-1.09e4 - 1.09e4i)T + 3.40e9iT^{2} \)
29 \( 1 + (6.65e4 - 1.60e5i)T + (-1.21e10 - 1.21e10i)T^{2} \)
31 \( 1 + 5.75e4T + 2.75e10T^{2} \)
37 \( 1 + (1.58e5 - 6.54e4i)T + (6.71e10 - 6.71e10i)T^{2} \)
41 \( 1 + (-3.71e4 - 3.71e4i)T + 1.94e11iT^{2} \)
43 \( 1 + (-5.52e4 - 1.33e5i)T + (-1.92e11 + 1.92e11i)T^{2} \)
47 \( 1 + 8.01e5iT - 5.06e11T^{2} \)
53 \( 1 + (-4.10e5 - 9.91e5i)T + (-8.30e11 + 8.30e11i)T^{2} \)
59 \( 1 + (-1.80e6 + 7.48e5i)T + (1.75e12 - 1.75e12i)T^{2} \)
61 \( 1 + (-5.58e4 + 1.34e5i)T + (-2.22e12 - 2.22e12i)T^{2} \)
67 \( 1 + (-5.44e5 + 1.31e6i)T + (-4.28e12 - 4.28e12i)T^{2} \)
71 \( 1 + (-3.40e6 + 3.40e6i)T - 9.09e12iT^{2} \)
73 \( 1 + (1.81e6 + 1.81e6i)T + 1.10e13iT^{2} \)
79 \( 1 + 4.67e6iT - 1.92e13T^{2} \)
83 \( 1 + (-1.18e6 - 4.91e5i)T + (1.91e13 + 1.91e13i)T^{2} \)
89 \( 1 + (3.93e6 - 3.93e6i)T - 4.42e13iT^{2} \)
97 \( 1 + 1.32e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.22589366777191242412119861537, −13.91722900108166601400333898101, −12.71058029477432480719784550083, −11.49734400866103831645923155393, −10.39180929237418941973891191619, −9.286310759963659296171443517299, −7.53235183243119684163839938788, −5.10031810334680526016368616722, −3.73118734813116256966431514303, −1.62682679270137081129861853589, 0.68725017529060988263625404219, 3.90943255540255416661359877712, 5.73801022080856537214576530225, 7.03530782067573535232588865657, 8.372663111283275449841192613589, 9.695227769875214674847969848253, 11.65720149911538318684539864697, 12.97393426713966519971564445027, 14.06102948404872684964904677937, 15.35936779872394158595938386166

Graph of the $Z$-function along the critical line