Properties

Label 2-2e5-1.1-c1-0-0
Degree $2$
Conductor $32$
Sign $1$
Analytic cond. $0.255521$
Root an. cond. $0.505491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 3·9-s + 6·13-s + 2·17-s − 25-s − 10·29-s − 2·37-s + 10·41-s + 6·45-s − 7·49-s + 14·53-s − 10·61-s − 12·65-s − 6·73-s + 9·81-s − 4·85-s + 10·89-s + 18·97-s − 2·101-s + 6·109-s − 14·113-s − 18·117-s + ⋯
L(s)  = 1  − 0.894·5-s − 9-s + 1.66·13-s + 0.485·17-s − 1/5·25-s − 1.85·29-s − 0.328·37-s + 1.56·41-s + 0.894·45-s − 49-s + 1.92·53-s − 1.28·61-s − 1.48·65-s − 0.702·73-s + 81-s − 0.433·85-s + 1.05·89-s + 1.82·97-s − 0.199·101-s + 0.574·109-s − 1.31·113-s − 1.66·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32\)    =    \(2^{5}\)
Sign: $1$
Analytic conductor: \(0.255521\)
Root analytic conductor: \(0.505491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{32} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6555143885\)
\(L(\frac12)\) \(\approx\) \(0.6555143885\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.73856366990991880815681244917, −15.74882074786535250024495459074, −14.57652563978276046331230069557, −13.27687552535142704095990346642, −11.76661268274493420855693255102, −10.90769214371221130983350005998, −8.955386231165229198073332132052, −7.77199473906097062385997282225, −5.87146418848833687506982135026, −3.67478222653086463350186782835, 3.67478222653086463350186782835, 5.87146418848833687506982135026, 7.77199473906097062385997282225, 8.955386231165229198073332132052, 10.90769214371221130983350005998, 11.76661268274493420855693255102, 13.27687552535142704095990346642, 14.57652563978276046331230069557, 15.74882074786535250024495459074, 16.73856366990991880815681244917

Graph of the $Z$-function along the critical line