Properties

Label 2-2e4-1.1-c27-0-3
Degree $2$
Conductor $16$
Sign $1$
Analytic cond. $73.8968$
Root an. cond. $8.59633$
Motivic weight $27$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.84e6·3-s − 5.14e9·5-s − 2.72e11·7-s + 1.58e13·9-s − 9.16e13·11-s − 5.35e14·13-s − 2.49e16·15-s + 2.36e16·17-s + 8.85e16·19-s − 1.32e18·21-s + 1.77e18·23-s + 1.89e19·25-s + 4.00e19·27-s + 8.29e19·29-s + 3.33e19·31-s − 4.44e20·33-s + 1.40e21·35-s + 1.06e20·37-s − 2.59e21·39-s − 1.53e21·41-s + 1.62e22·43-s − 8.17e22·45-s − 1.37e22·47-s + 8.81e21·49-s + 1.14e23·51-s + 2.69e23·53-s + 4.71e23·55-s + ⋯
L(s)  = 1  + 1.75·3-s − 1.88·5-s − 1.06·7-s + 2.08·9-s − 0.800·11-s − 0.489·13-s − 3.30·15-s + 0.579·17-s + 0.482·19-s − 1.87·21-s + 0.734·23-s + 2.54·25-s + 1.90·27-s + 1.50·29-s + 0.245·31-s − 1.40·33-s + 2.00·35-s + 0.0718·37-s − 0.860·39-s − 0.258·41-s + 1.43·43-s − 3.92·45-s − 0.368·47-s + 0.134·49-s + 1.01·51-s + 1.41·53-s + 1.50·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $1$
Analytic conductor: \(73.8968\)
Root analytic conductor: \(8.59633\)
Motivic weight: \(27\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16,\ (\ :27/2),\ 1)\)

Particular Values

\(L(14)\) \(\approx\) \(2.263359339\)
\(L(\frac12)\) \(\approx\) \(2.263359339\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 4.84e6T + 7.62e12T^{2} \)
5 \( 1 + 5.14e9T + 7.45e18T^{2} \)
7 \( 1 + 2.72e11T + 6.57e22T^{2} \)
11 \( 1 + 9.16e13T + 1.31e28T^{2} \)
13 \( 1 + 5.35e14T + 1.19e30T^{2} \)
17 \( 1 - 2.36e16T + 1.66e33T^{2} \)
19 \( 1 - 8.85e16T + 3.36e34T^{2} \)
23 \( 1 - 1.77e18T + 5.84e36T^{2} \)
29 \( 1 - 8.29e19T + 3.05e39T^{2} \)
31 \( 1 - 3.33e19T + 1.84e40T^{2} \)
37 \( 1 - 1.06e20T + 2.19e42T^{2} \)
41 \( 1 + 1.53e21T + 3.50e43T^{2} \)
43 \( 1 - 1.62e22T + 1.26e44T^{2} \)
47 \( 1 + 1.37e22T + 1.40e45T^{2} \)
53 \( 1 - 2.69e23T + 3.59e46T^{2} \)
59 \( 1 + 2.79e22T + 6.50e47T^{2} \)
61 \( 1 + 9.04e23T + 1.59e48T^{2} \)
67 \( 1 - 6.95e23T + 2.01e49T^{2} \)
71 \( 1 + 1.63e25T + 9.63e49T^{2} \)
73 \( 1 + 9.30e24T + 2.04e50T^{2} \)
79 \( 1 + 2.80e24T + 1.72e51T^{2} \)
83 \( 1 + 1.27e25T + 6.53e51T^{2} \)
89 \( 1 - 1.64e26T + 4.30e52T^{2} \)
97 \( 1 - 9.73e26T + 4.39e53T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14153549035429114224324258206, −12.12519759923829296111213682234, −10.25196806385322272628651314427, −8.903781848532066504508397745213, −7.87667739849360071815793125981, −7.14600432587731059987260510549, −4.47980551324392671075138300118, −3.31037505776386598837132894832, −2.80700369394313268045908865928, −0.69938293660749569340519667310, 0.69938293660749569340519667310, 2.80700369394313268045908865928, 3.31037505776386598837132894832, 4.47980551324392671075138300118, 7.14600432587731059987260510549, 7.87667739849360071815793125981, 8.903781848532066504508397745213, 10.25196806385322272628651314427, 12.12519759923829296111213682234, 13.14153549035429114224324258206

Graph of the $Z$-function along the critical line