L(s) = 1 | + 9.70e4·3-s − 3.39e7·5-s + 5.28e8·7-s − 1.03e9·9-s + 1.21e11·11-s + 4.33e11·13-s − 3.29e12·15-s − 1.31e13·17-s − 2.18e13·19-s + 5.13e13·21-s − 1.40e14·23-s + 6.74e14·25-s − 1.11e15·27-s + 1.17e15·29-s − 9.57e14·31-s + 1.18e16·33-s − 1.79e16·35-s − 3.53e16·37-s + 4.20e16·39-s − 1.71e17·41-s − 1.35e17·43-s + 3.51e16·45-s + 5.75e17·47-s − 2.78e17·49-s − 1.27e18·51-s − 9.62e17·53-s − 4.13e18·55-s + ⋯ |
L(s) = 1 | + 0.949·3-s − 1.55·5-s + 0.707·7-s − 0.0989·9-s + 1.41·11-s + 0.872·13-s − 1.47·15-s − 1.58·17-s − 0.818·19-s + 0.671·21-s − 0.708·23-s + 1.41·25-s − 1.04·27-s + 0.516·29-s − 0.209·31-s + 1.34·33-s − 1.09·35-s − 1.20·37-s + 0.828·39-s − 1.99·41-s − 0.957·43-s + 0.153·45-s + 1.59·47-s − 0.499·49-s − 1.50·51-s − 0.755·53-s − 2.20·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(11)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{23}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 - 9.70e4T + 1.04e10T^{2} \) |
| 5 | \( 1 + 3.39e7T + 4.76e14T^{2} \) |
| 7 | \( 1 - 5.28e8T + 5.58e17T^{2} \) |
| 11 | \( 1 - 1.21e11T + 7.40e21T^{2} \) |
| 13 | \( 1 - 4.33e11T + 2.47e23T^{2} \) |
| 17 | \( 1 + 1.31e13T + 6.90e25T^{2} \) |
| 19 | \( 1 + 2.18e13T + 7.14e26T^{2} \) |
| 23 | \( 1 + 1.40e14T + 3.94e28T^{2} \) |
| 29 | \( 1 - 1.17e15T + 5.13e30T^{2} \) |
| 31 | \( 1 + 9.57e14T + 2.08e31T^{2} \) |
| 37 | \( 1 + 3.53e16T + 8.55e32T^{2} \) |
| 41 | \( 1 + 1.71e17T + 7.38e33T^{2} \) |
| 43 | \( 1 + 1.35e17T + 2.00e34T^{2} \) |
| 47 | \( 1 - 5.75e17T + 1.30e35T^{2} \) |
| 53 | \( 1 + 9.62e17T + 1.62e36T^{2} \) |
| 59 | \( 1 + 4.87e18T + 1.54e37T^{2} \) |
| 61 | \( 1 - 4.59e18T + 3.10e37T^{2} \) |
| 67 | \( 1 - 1.78e19T + 2.22e38T^{2} \) |
| 71 | \( 1 + 2.93e19T + 7.52e38T^{2} \) |
| 73 | \( 1 + 8.32e18T + 1.34e39T^{2} \) |
| 79 | \( 1 - 7.05e19T + 7.08e39T^{2} \) |
| 83 | \( 1 + 2.11e20T + 1.99e40T^{2} \) |
| 89 | \( 1 - 2.62e20T + 8.65e40T^{2} \) |
| 97 | \( 1 - 3.84e20T + 5.27e41T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.75259437897908061459698863495, −11.95258652981533797251702989750, −11.07102716218618058281267418426, −8.780295142866150335947469084317, −8.278343143097965037197126763049, −6.73862480389650957085147133829, −4.33862925367507172476544966373, −3.51238623563548513343727677386, −1.75987227444394970102987374777, 0,
1.75987227444394970102987374777, 3.51238623563548513343727677386, 4.33862925367507172476544966373, 6.73862480389650957085147133829, 8.278343143097965037197126763049, 8.780295142866150335947469084317, 11.07102716218618058281267418426, 11.95258652981533797251702989750, 13.75259437897908061459698863495