L(s) = 1 | + (0.268 + 0.556i)2-s + (−0.483 + 0.385i)3-s + (1.00 − 1.26i)4-s + (3.47 − 1.67i)5-s + (−0.344 − 0.165i)6-s + (−1.39 − 1.74i)7-s + (2.18 + 0.497i)8-s + (−0.582 + 2.55i)9-s + (1.86 + 1.48i)10-s + (1.34 − 0.307i)11-s + i·12-s + (−0.0525 − 0.230i)13-s + (0.599 − 1.24i)14-s + (−1.03 + 2.14i)15-s + (−0.412 − 1.80i)16-s + 4.38i·17-s + ⋯ |
L(s) = 1 | + (0.189 + 0.393i)2-s + (−0.278 + 0.222i)3-s + (0.504 − 0.632i)4-s + (1.55 − 0.747i)5-s + (−0.140 − 0.0676i)6-s + (−0.526 − 0.660i)7-s + (0.770 + 0.175i)8-s + (−0.194 + 0.850i)9-s + (0.588 + 0.469i)10-s + (0.406 − 0.0927i)11-s + 0.288i·12-s + (−0.0145 − 0.0638i)13-s + (0.160 − 0.332i)14-s + (−0.266 + 0.554i)15-s + (−0.103 − 0.451i)16-s + 1.06i·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(0.974+0.225i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(0.974+0.225i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
0.974+0.225i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(270,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), 0.974+0.225i)
|
Particular Values
L(1) |
≈ |
2.29435−0.261550i |
L(21) |
≈ |
2.29435−0.261550i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(−0.268−0.556i)T+(−1.24+1.56i)T2 |
| 3 | 1+(0.483−0.385i)T+(0.667−2.92i)T2 |
| 5 | 1+(−3.47+1.67i)T+(3.11−3.90i)T2 |
| 7 | 1+(1.39+1.74i)T+(−1.55+6.82i)T2 |
| 11 | 1+(−1.34+0.307i)T+(9.91−4.77i)T2 |
| 13 | 1+(0.0525+0.230i)T+(−11.7+5.64i)T2 |
| 17 | 1−4.38iT−17T2 |
| 19 | 1+(−3.79−3.02i)T+(4.22+18.5i)T2 |
| 23 | 1+(−1.11−0.536i)T+(14.3+17.9i)T2 |
| 31 | 1+(4.37+9.09i)T+(−19.3+24.2i)T2 |
| 37 | 1+(4.59+1.04i)T+(33.3+16.0i)T2 |
| 41 | 1−3.85iT−41T2 |
| 43 | 1+(−3.13+6.51i)T+(−26.8−33.6i)T2 |
| 47 | 1+(6.82−1.55i)T+(42.3−20.3i)T2 |
| 53 | 1+(−1.80+0.867i)T+(33.0−41.4i)T2 |
| 59 | 1−6.09T+59T2 |
| 61 | 1+(0.483−0.385i)T+(13.5−59.4i)T2 |
| 67 | 1+(0.339−1.48i)T+(−60.3−29.0i)T2 |
| 71 | 1+(−2.33−10.2i)T+(−63.9+30.8i)T2 |
| 73 | 1+(5.94−12.3i)T+(−45.5−57.0i)T2 |
| 79 | 1+(5.93+1.35i)T+(71.1+34.2i)T2 |
| 83 | 1+(6.20−7.77i)T+(−18.4−80.9i)T2 |
| 89 | 1+(−2.04−4.24i)T+(−55.4+69.5i)T2 |
| 97 | 1+(−2.78−2.22i)T+(21.5+94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03421260845797390667776207487, −9.695562789867447831147096638734, −8.517814706729050892492237645071, −7.41958725448610246561045206811, −6.42746754220080940431438546614, −5.67191427353974833614889440510, −5.27562976120342545025929740840, −4.02807800356887535552407741813, −2.24948435261610742183453717790, −1.28630566606136308687533845422,
1.60578060547623550960346853358, 2.81093300795874305160856761746, 3.28019624937593781073364121165, 5.05787770289355342679269199933, 6.02182471024711003030988350320, 6.76357733486929382663681140612, 7.22585570419334655036348968948, 8.932150416736550701002117879392, 9.381434940019659459543516312617, 10.27749940651262789657600911089