L(s) = 1 | + (0.268 + 0.556i)2-s + (−0.483 + 0.385i)3-s + (1.00 − 1.26i)4-s + (3.47 − 1.67i)5-s + (−0.344 − 0.165i)6-s + (−1.39 − 1.74i)7-s + (2.18 + 0.497i)8-s + (−0.582 + 2.55i)9-s + (1.86 + 1.48i)10-s + (1.34 − 0.307i)11-s + i·12-s + (−0.0525 − 0.230i)13-s + (0.599 − 1.24i)14-s + (−1.03 + 2.14i)15-s + (−0.412 − 1.80i)16-s + 4.38i·17-s + ⋯ |
L(s) = 1 | + (0.189 + 0.393i)2-s + (−0.278 + 0.222i)3-s + (0.504 − 0.632i)4-s + (1.55 − 0.747i)5-s + (−0.140 − 0.0676i)6-s + (−0.526 − 0.660i)7-s + (0.770 + 0.175i)8-s + (−0.194 + 0.850i)9-s + (0.588 + 0.469i)10-s + (0.406 − 0.0927i)11-s + 0.288i·12-s + (−0.0145 − 0.0638i)13-s + (0.160 − 0.332i)14-s + (−0.266 + 0.554i)15-s + (−0.103 − 0.451i)16-s + 1.06i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.974 + 0.225i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.974 + 0.225i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.29435 - 0.261550i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.29435 - 0.261550i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-0.268 - 0.556i)T + (-1.24 + 1.56i)T^{2} \) |
| 3 | \( 1 + (0.483 - 0.385i)T + (0.667 - 2.92i)T^{2} \) |
| 5 | \( 1 + (-3.47 + 1.67i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (1.39 + 1.74i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (-1.34 + 0.307i)T + (9.91 - 4.77i)T^{2} \) |
| 13 | \( 1 + (0.0525 + 0.230i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 - 4.38iT - 17T^{2} \) |
| 19 | \( 1 + (-3.79 - 3.02i)T + (4.22 + 18.5i)T^{2} \) |
| 23 | \( 1 + (-1.11 - 0.536i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (4.37 + 9.09i)T + (-19.3 + 24.2i)T^{2} \) |
| 37 | \( 1 + (4.59 + 1.04i)T + (33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 - 3.85iT - 41T^{2} \) |
| 43 | \( 1 + (-3.13 + 6.51i)T + (-26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (6.82 - 1.55i)T + (42.3 - 20.3i)T^{2} \) |
| 53 | \( 1 + (-1.80 + 0.867i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 - 6.09T + 59T^{2} \) |
| 61 | \( 1 + (0.483 - 0.385i)T + (13.5 - 59.4i)T^{2} \) |
| 67 | \( 1 + (0.339 - 1.48i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (-2.33 - 10.2i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (5.94 - 12.3i)T + (-45.5 - 57.0i)T^{2} \) |
| 79 | \( 1 + (5.93 + 1.35i)T + (71.1 + 34.2i)T^{2} \) |
| 83 | \( 1 + (6.20 - 7.77i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (-2.04 - 4.24i)T + (-55.4 + 69.5i)T^{2} \) |
| 97 | \( 1 + (-2.78 - 2.22i)T + (21.5 + 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03421260845797390667776207487, −9.695562789867447831147096638734, −8.517814706729050892492237645071, −7.41958725448610246561045206811, −6.42746754220080940431438546614, −5.67191427353974833614889440510, −5.27562976120342545025929740840, −4.02807800356887535552407741813, −2.24948435261610742183453717790, −1.28630566606136308687533845422,
1.60578060547623550960346853358, 2.81093300795874305160856761746, 3.28019624937593781073364121165, 5.05787770289355342679269199933, 6.02182471024711003030988350320, 6.76357733486929382663681140612, 7.22585570419334655036348968948, 8.932150416736550701002117879392, 9.381434940019659459543516312617, 10.27749940651262789657600911089