Properties

Label 2-29e2-29.4-c1-0-49
Degree 22
Conductor 841841
Sign 0.722+0.691i-0.722 + 0.691i
Analytic cond. 6.715416.71541
Root an. cond. 2.591412.59141
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.602 + 0.137i)2-s + (−0.268 − 0.556i)3-s + (−1.45 − 0.702i)4-s + (0.857 − 3.75i)5-s + (−0.0849 − 0.372i)6-s + (2.01 − 0.970i)7-s + (−1.74 − 1.39i)8-s + (1.63 − 2.04i)9-s + (1.03 − 2.14i)10-s + (−1.08 + 0.861i)11-s + 0.999i·12-s + (0.147 + 0.184i)13-s + (1.34 − 0.307i)14-s + (−2.32 + 0.530i)15-s + (1.15 + 1.44i)16-s + 4.38i·17-s + ⋯
L(s)  = 1  + (0.426 + 0.0972i)2-s + (−0.154 − 0.321i)3-s + (−0.728 − 0.351i)4-s + (0.383 − 1.68i)5-s + (−0.0346 − 0.152i)6-s + (0.761 − 0.366i)7-s + (−0.618 − 0.492i)8-s + (0.544 − 0.682i)9-s + (0.326 − 0.678i)10-s + (−0.325 + 0.259i)11-s + 0.288i·12-s + (0.0408 + 0.0511i)13-s + (0.360 − 0.0821i)14-s + (−0.599 + 0.136i)15-s + (0.289 + 0.362i)16-s + 1.06i·17-s + ⋯

Functional equation

Λ(s)=(841s/2ΓC(s)L(s)=((0.722+0.691i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(841s/2ΓC(s+1/2)L(s)=((0.722+0.691i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 841841    =    29229^{2}
Sign: 0.722+0.691i-0.722 + 0.691i
Analytic conductor: 6.715416.71541
Root analytic conductor: 2.591412.59141
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ841(236,)\chi_{841} (236, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 841, ( :1/2), 0.722+0.691i)(2,\ 841,\ (\ :1/2),\ -0.722 + 0.691i)

Particular Values

L(1)L(1) \approx 0.5931491.47739i0.593149 - 1.47739i
L(12)L(\frac12) \approx 0.5931491.47739i0.593149 - 1.47739i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad29 1 1
good2 1+(0.6020.137i)T+(1.80+0.867i)T2 1 + (-0.602 - 0.137i)T + (1.80 + 0.867i)T^{2}
3 1+(0.268+0.556i)T+(1.87+2.34i)T2 1 + (0.268 + 0.556i)T + (-1.87 + 2.34i)T^{2}
5 1+(0.857+3.75i)T+(4.502.16i)T2 1 + (-0.857 + 3.75i)T + (-4.50 - 2.16i)T^{2}
7 1+(2.01+0.970i)T+(4.365.47i)T2 1 + (-2.01 + 0.970i)T + (4.36 - 5.47i)T^{2}
11 1+(1.080.861i)T+(2.4410.7i)T2 1 + (1.08 - 0.861i)T + (2.44 - 10.7i)T^{2}
13 1+(0.1470.184i)T+(2.89+12.6i)T2 1 + (-0.147 - 0.184i)T + (-2.89 + 12.6i)T^{2}
17 14.38iT17T2 1 - 4.38iT - 17T^{2}
19 1+(2.10+4.37i)T+(11.814.8i)T2 1 + (-2.10 + 4.37i)T + (-11.8 - 14.8i)T^{2}
23 1+(0.2751.20i)T+(20.7+9.97i)T2 1 + (-0.275 - 1.20i)T + (-20.7 + 9.97i)T^{2}
31 1+(9.83+2.24i)T+(27.9+13.4i)T2 1 + (9.83 + 2.24i)T + (27.9 + 13.4i)T^{2}
37 1+(3.682.93i)T+(8.23+36.0i)T2 1 + (-3.68 - 2.93i)T + (8.23 + 36.0i)T^{2}
41 13.85iT41T2 1 - 3.85iT - 41T^{2}
43 1+(7.05+1.61i)T+(38.718.6i)T2 1 + (-7.05 + 1.61i)T + (38.7 - 18.6i)T^{2}
47 1+(5.47+4.36i)T+(10.445.8i)T2 1 + (-5.47 + 4.36i)T + (10.4 - 45.8i)T^{2}
53 1+(0.445+1.94i)T+(47.722.9i)T2 1 + (-0.445 + 1.94i)T + (-47.7 - 22.9i)T^{2}
59 16.09T+59T2 1 - 6.09T + 59T^{2}
61 1+(0.268+0.556i)T+(38.0+47.6i)T2 1 + (0.268 + 0.556i)T + (-38.0 + 47.6i)T^{2}
67 1+(0.952+1.19i)T+(14.965.3i)T2 1 + (-0.952 + 1.19i)T + (-14.9 - 65.3i)T^{2}
71 1+(6.52+8.18i)T+(15.7+69.2i)T2 1 + (6.52 + 8.18i)T + (-15.7 + 69.2i)T^{2}
73 1+(13.33.05i)T+(65.731.6i)T2 1 + (13.3 - 3.05i)T + (65.7 - 31.6i)T^{2}
79 1+(4.763.79i)T+(17.5+77.0i)T2 1 + (-4.76 - 3.79i)T + (17.5 + 77.0i)T^{2}
83 1+(8.954.31i)T+(51.7+64.8i)T2 1 + (-8.95 - 4.31i)T + (51.7 + 64.8i)T^{2}
89 1+(4.591.04i)T+(80.1+38.6i)T2 1 + (-4.59 - 1.04i)T + (80.1 + 38.6i)T^{2}
97 1+(1.54+3.20i)T+(60.475.8i)T2 1 + (-1.54 + 3.20i)T + (-60.4 - 75.8i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.581730373499390680853704278969, −9.148952049578102968618056733825, −8.308902978706365989800471135546, −7.35082858792306486311687453680, −6.06138624430064679643079823633, −5.32694917169042794239738236893, −4.57365950531642123150022631104, −3.89188825909699118911716807304, −1.66930958910473202140614148004, −0.74777230526507620978422880461, 2.18598908661274994856123770033, 3.15371891342622954475905353511, 4.15882857936807437477033626047, 5.27458069048673251551626962767, 5.84304655800974596398353553383, 7.30303339091413949275275113997, 7.72136539330966355463836871035, 8.950222457770236381750950945920, 9.816078606163824635050792755728, 10.62596789140238629011876802314

Graph of the ZZ-function along the critical line