L(s) = 1 | + (0.602 + 0.137i)2-s + (−0.268 − 0.556i)3-s + (−1.45 − 0.702i)4-s + (0.857 − 3.75i)5-s + (−0.0849 − 0.372i)6-s + (2.01 − 0.970i)7-s + (−1.74 − 1.39i)8-s + (1.63 − 2.04i)9-s + (1.03 − 2.14i)10-s + (−1.08 + 0.861i)11-s + 0.999i·12-s + (0.147 + 0.184i)13-s + (1.34 − 0.307i)14-s + (−2.32 + 0.530i)15-s + (1.15 + 1.44i)16-s + 4.38i·17-s + ⋯ |
L(s) = 1 | + (0.426 + 0.0972i)2-s + (−0.154 − 0.321i)3-s + (−0.728 − 0.351i)4-s + (0.383 − 1.68i)5-s + (−0.0346 − 0.152i)6-s + (0.761 − 0.366i)7-s + (−0.618 − 0.492i)8-s + (0.544 − 0.682i)9-s + (0.326 − 0.678i)10-s + (−0.325 + 0.259i)11-s + 0.288i·12-s + (0.0408 + 0.0511i)13-s + (0.360 − 0.0821i)14-s + (−0.599 + 0.136i)15-s + (0.289 + 0.362i)16-s + 1.06i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.722 + 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.593149 - 1.47739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.593149 - 1.47739i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-0.602 - 0.137i)T + (1.80 + 0.867i)T^{2} \) |
| 3 | \( 1 + (0.268 + 0.556i)T + (-1.87 + 2.34i)T^{2} \) |
| 5 | \( 1 + (-0.857 + 3.75i)T + (-4.50 - 2.16i)T^{2} \) |
| 7 | \( 1 + (-2.01 + 0.970i)T + (4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (1.08 - 0.861i)T + (2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (-0.147 - 0.184i)T + (-2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 - 4.38iT - 17T^{2} \) |
| 19 | \( 1 + (-2.10 + 4.37i)T + (-11.8 - 14.8i)T^{2} \) |
| 23 | \( 1 + (-0.275 - 1.20i)T + (-20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (9.83 + 2.24i)T + (27.9 + 13.4i)T^{2} \) |
| 37 | \( 1 + (-3.68 - 2.93i)T + (8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 - 3.85iT - 41T^{2} \) |
| 43 | \( 1 + (-7.05 + 1.61i)T + (38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (-5.47 + 4.36i)T + (10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (-0.445 + 1.94i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 - 6.09T + 59T^{2} \) |
| 61 | \( 1 + (0.268 + 0.556i)T + (-38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + (-0.952 + 1.19i)T + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (6.52 + 8.18i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (13.3 - 3.05i)T + (65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (-4.76 - 3.79i)T + (17.5 + 77.0i)T^{2} \) |
| 83 | \( 1 + (-8.95 - 4.31i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (-4.59 - 1.04i)T + (80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + (-1.54 + 3.20i)T + (-60.4 - 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.581730373499390680853704278969, −9.148952049578102968618056733825, −8.308902978706365989800471135546, −7.35082858792306486311687453680, −6.06138624430064679643079823633, −5.32694917169042794239738236893, −4.57365950531642123150022631104, −3.89188825909699118911716807304, −1.66930958910473202140614148004, −0.74777230526507620978422880461,
2.18598908661274994856123770033, 3.15371891342622954475905353511, 4.15882857936807437477033626047, 5.27458069048673251551626962767, 5.84304655800974596398353553383, 7.30303339091413949275275113997, 7.72136539330966355463836871035, 8.950222457770236381750950945920, 9.816078606163824635050792755728, 10.62596789140238629011876802314