L(s) = 1 | + (1.57 + 0.360i)2-s + (−0.702 − 1.45i)3-s + (0.556 + 0.268i)4-s + (−0.635 + 2.78i)5-s + (−0.582 − 2.55i)6-s + (−2.01 + 0.970i)7-s + (−1.74 − 1.39i)8-s + (0.238 − 0.298i)9-s + (−2.00 + 4.16i)10-s + (2.82 − 2.25i)11-s − 1.00i·12-s + (−2.64 − 3.31i)13-s + (−3.52 + 0.805i)14-s + (4.50 − 1.02i)15-s + (−3.02 − 3.79i)16-s − 6.61i·17-s + ⋯ |
L(s) = 1 | + (1.11 + 0.254i)2-s + (−0.405 − 0.841i)3-s + (0.278 + 0.134i)4-s + (−0.284 + 1.24i)5-s + (−0.237 − 1.04i)6-s + (−0.761 + 0.366i)7-s + (−0.618 − 0.492i)8-s + (0.0793 − 0.0995i)9-s + (−0.633 + 1.31i)10-s + (0.852 − 0.680i)11-s − 0.288i·12-s + (−0.732 − 0.918i)13-s + (−0.942 + 0.215i)14-s + (1.16 − 0.265i)15-s + (−0.756 − 0.948i)16-s − 1.60i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.317 + 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.317 + 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.781326 - 1.08541i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.781326 - 1.08541i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-1.57 - 0.360i)T + (1.80 + 0.867i)T^{2} \) |
| 3 | \( 1 + (0.702 + 1.45i)T + (-1.87 + 2.34i)T^{2} \) |
| 5 | \( 1 + (0.635 - 2.78i)T + (-4.50 - 2.16i)T^{2} \) |
| 7 | \( 1 + (2.01 - 0.970i)T + (4.36 - 5.47i)T^{2} \) |
| 11 | \( 1 + (-2.82 + 2.25i)T + (2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (2.64 + 3.31i)T + (-2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + 6.61iT - 17T^{2} \) |
| 19 | \( 1 + (-0.804 + 1.67i)T + (-11.8 - 14.8i)T^{2} \) |
| 23 | \( 1 + (0.720 + 3.15i)T + (-20.7 + 9.97i)T^{2} \) |
| 31 | \( 1 + (1.06 + 0.242i)T + (27.9 + 13.4i)T^{2} \) |
| 37 | \( 1 + (-6.80 - 5.42i)T + (8.23 + 36.0i)T^{2} \) |
| 41 | \( 1 - 2.85iT - 41T^{2} \) |
| 43 | \( 1 + (2.69 - 0.615i)T + (38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (5.47 - 4.36i)T + (10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (-0.445 + 1.94i)T + (-47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + 5.09T + 59T^{2} \) |
| 61 | \( 1 + (0.702 + 1.45i)T + (-38.0 + 47.6i)T^{2} \) |
| 67 | \( 1 + (-6.52 + 8.18i)T + (-14.9 - 65.3i)T^{2} \) |
| 71 | \( 1 + (0.952 + 1.19i)T + (-15.7 + 69.2i)T^{2} \) |
| 73 | \( 1 + (-0.284 + 0.0649i)T + (65.7 - 31.6i)T^{2} \) |
| 79 | \( 1 + (-3.97 - 3.17i)T + (17.5 + 77.0i)T^{2} \) |
| 83 | \( 1 + (7.15 + 3.44i)T + (51.7 + 64.8i)T^{2} \) |
| 89 | \( 1 + (-8.48 - 1.93i)T + (80.1 + 38.6i)T^{2} \) |
| 97 | \( 1 + (-7.18 + 14.9i)T + (-60.4 - 75.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.865983282243302907604472220193, −9.317998346476779836653898950372, −7.80312517357243396344811633169, −6.84838735565543186282382360545, −6.53175762590985609633111809470, −5.76110836976910393864743615675, −4.63017688869680637464207446575, −3.26538715699956768298754027402, −2.84409863317501548258792133600, −0.47134792476444268192398113560,
1.83978937265980316183946182152, 3.77735304004766804104208061418, 4.10150200522458996014480493603, 4.84677681783079989248958755772, 5.67628632662782105716315843669, 6.69733002220172212439582917769, 7.961266521671800586905923798192, 9.090033971316476169399297262230, 9.573516128636878075545169310390, 10.48375713328716429810265154377