L(s) = 1 | + (1.57 + 0.360i)2-s + (−0.702 − 1.45i)3-s + (0.556 + 0.268i)4-s + (−0.635 + 2.78i)5-s + (−0.582 − 2.55i)6-s + (−2.01 + 0.970i)7-s + (−1.74 − 1.39i)8-s + (0.238 − 0.298i)9-s + (−2.00 + 4.16i)10-s + (2.82 − 2.25i)11-s − 1.00i·12-s + (−2.64 − 3.31i)13-s + (−3.52 + 0.805i)14-s + (4.50 − 1.02i)15-s + (−3.02 − 3.79i)16-s − 6.61i·17-s + ⋯ |
L(s) = 1 | + (1.11 + 0.254i)2-s + (−0.405 − 0.841i)3-s + (0.278 + 0.134i)4-s + (−0.284 + 1.24i)5-s + (−0.237 − 1.04i)6-s + (−0.761 + 0.366i)7-s + (−0.618 − 0.492i)8-s + (0.0793 − 0.0995i)9-s + (−0.633 + 1.31i)10-s + (0.852 − 0.680i)11-s − 0.288i·12-s + (−0.732 − 0.918i)13-s + (−0.942 + 0.215i)14-s + (1.16 − 0.265i)15-s + (−0.756 − 0.948i)16-s − 1.60i·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(−0.317+0.948i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(−0.317+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
−0.317+0.948i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(236,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), −0.317+0.948i)
|
Particular Values
L(1) |
≈ |
0.781326−1.08541i |
L(21) |
≈ |
0.781326−1.08541i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(−1.57−0.360i)T+(1.80+0.867i)T2 |
| 3 | 1+(0.702+1.45i)T+(−1.87+2.34i)T2 |
| 5 | 1+(0.635−2.78i)T+(−4.50−2.16i)T2 |
| 7 | 1+(2.01−0.970i)T+(4.36−5.47i)T2 |
| 11 | 1+(−2.82+2.25i)T+(2.44−10.7i)T2 |
| 13 | 1+(2.64+3.31i)T+(−2.89+12.6i)T2 |
| 17 | 1+6.61iT−17T2 |
| 19 | 1+(−0.804+1.67i)T+(−11.8−14.8i)T2 |
| 23 | 1+(0.720+3.15i)T+(−20.7+9.97i)T2 |
| 31 | 1+(1.06+0.242i)T+(27.9+13.4i)T2 |
| 37 | 1+(−6.80−5.42i)T+(8.23+36.0i)T2 |
| 41 | 1−2.85iT−41T2 |
| 43 | 1+(2.69−0.615i)T+(38.7−18.6i)T2 |
| 47 | 1+(5.47−4.36i)T+(10.4−45.8i)T2 |
| 53 | 1+(−0.445+1.94i)T+(−47.7−22.9i)T2 |
| 59 | 1+5.09T+59T2 |
| 61 | 1+(0.702+1.45i)T+(−38.0+47.6i)T2 |
| 67 | 1+(−6.52+8.18i)T+(−14.9−65.3i)T2 |
| 71 | 1+(0.952+1.19i)T+(−15.7+69.2i)T2 |
| 73 | 1+(−0.284+0.0649i)T+(65.7−31.6i)T2 |
| 79 | 1+(−3.97−3.17i)T+(17.5+77.0i)T2 |
| 83 | 1+(7.15+3.44i)T+(51.7+64.8i)T2 |
| 89 | 1+(−8.48−1.93i)T+(80.1+38.6i)T2 |
| 97 | 1+(−7.18+14.9i)T+(−60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.865983282243302907604472220193, −9.317998346476779836653898950372, −7.80312517357243396344811633169, −6.84838735565543186282382360545, −6.53175762590985609633111809470, −5.76110836976910393864743615675, −4.63017688869680637464207446575, −3.26538715699956768298754027402, −2.84409863317501548258792133600, −0.47134792476444268192398113560,
1.83978937265980316183946182152, 3.77735304004766804104208061418, 4.10150200522458996014480493603, 4.84677681783079989248958755772, 5.67628632662782105716315843669, 6.69733002220172212439582917769, 7.961266521671800586905923798192, 9.090033971316476169399297262230, 9.573516128636878075545169310390, 10.48375713328716429810265154377