L(s) = 1 | + (−0.556 + 0.268i)2-s + (−0.385 − 0.483i)3-s + (−1.00 + 1.26i)4-s + (−3.47 + 1.67i)5-s + (0.344 + 0.165i)6-s + (−1.39 − 1.74i)7-s + (0.497 − 2.18i)8-s + (0.582 − 2.55i)9-s + (1.48 − 1.86i)10-s + (0.307 + 1.34i)11-s + 12-s + (0.0525 + 0.230i)13-s + (1.24 + 0.599i)14-s + (2.14 + 1.03i)15-s + (−0.412 − 1.80i)16-s − 4.38·17-s + ⋯ |
L(s) = 1 | + (−0.393 + 0.189i)2-s + (−0.222 − 0.278i)3-s + (−0.504 + 0.632i)4-s + (−1.55 + 0.747i)5-s + (0.140 + 0.0676i)6-s + (−0.526 − 0.660i)7-s + (0.175 − 0.770i)8-s + (0.194 − 0.850i)9-s + (0.469 − 0.588i)10-s + (0.0927 + 0.406i)11-s + 0.288·12-s + (0.0145 + 0.0638i)13-s + (0.332 + 0.160i)14-s + (0.554 + 0.266i)15-s + (−0.103 − 0.451i)16-s − 1.06·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(0.973−0.230i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(0.973−0.230i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
0.973−0.230i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(571,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), 0.973−0.230i)
|
Particular Values
L(1) |
≈ |
0.492690+0.0575577i |
L(21) |
≈ |
0.492690+0.0575577i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(0.556−0.268i)T+(1.24−1.56i)T2 |
| 3 | 1+(0.385+0.483i)T+(−0.667+2.92i)T2 |
| 5 | 1+(3.47−1.67i)T+(3.11−3.90i)T2 |
| 7 | 1+(1.39+1.74i)T+(−1.55+6.82i)T2 |
| 11 | 1+(−0.307−1.34i)T+(−9.91+4.77i)T2 |
| 13 | 1+(−0.0525−0.230i)T+(−11.7+5.64i)T2 |
| 17 | 1+4.38T+17T2 |
| 19 | 1+(3.02−3.79i)T+(−4.22−18.5i)T2 |
| 23 | 1+(−1.11−0.536i)T+(14.3+17.9i)T2 |
| 31 | 1+(−9.09+4.37i)T+(19.3−24.2i)T2 |
| 37 | 1+(1.04−4.59i)T+(−33.3−16.0i)T2 |
| 41 | 1−3.85T+41T2 |
| 43 | 1+(−6.51−3.13i)T+(26.8+33.6i)T2 |
| 47 | 1+(−1.55−6.82i)T+(−42.3+20.3i)T2 |
| 53 | 1+(−1.80+0.867i)T+(33.0−41.4i)T2 |
| 59 | 1−6.09T+59T2 |
| 61 | 1+(0.385+0.483i)T+(−13.5+59.4i)T2 |
| 67 | 1+(−0.339+1.48i)T+(−60.3−29.0i)T2 |
| 71 | 1+(2.33+10.2i)T+(−63.9+30.8i)T2 |
| 73 | 1+(−12.3−5.94i)T+(45.5+57.0i)T2 |
| 79 | 1+(−1.35+5.93i)T+(−71.1−34.2i)T2 |
| 83 | 1+(6.20−7.77i)T+(−18.4−80.9i)T2 |
| 89 | 1+(4.24−2.04i)T+(55.4−69.5i)T2 |
| 97 | 1+(−2.22+2.78i)T+(−21.5−94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17333468567448912095392189655, −9.341239925464861039400647367827, −8.308593250661852781774420457237, −7.68056195013240521035390817190, −6.87732693963300807417524174889, −6.43572562836321539502692952725, −4.28712737180342224394427025342, −4.03784564238360633543929468019, −2.98507744484102649545987952670, −0.56226121772665524297482685135,
0.63118108153410745310510595568, 2.46486924639989070843017133410, 4.08700952240942390392367118532, 4.69684914474254772634402347461, 5.53491290433759087902666325059, 6.76561445005449166260024544599, 7.936161182267056858643723640835, 8.735486677518784825368171223503, 9.028874431407587236598256803753, 10.26083555455323772640853894130