L(s) = 1 | + (0.702 − 1.45i)2-s + (−1.26 − 1.00i)3-s + (−0.385 − 0.483i)4-s + (−2.57 − 1.23i)5-s + (−2.35 + 1.13i)6-s + (1.39 − 1.74i)7-s + (2.18 − 0.497i)8-s + (−0.0849 − 0.372i)9-s + (−3.61 + 2.87i)10-s + (−3.52 − 0.805i)11-s + 1.00i·12-s + (0.942 − 4.12i)13-s + (−1.56 − 3.25i)14-s + (2.00 + 4.16i)15-s + (1.08 − 4.73i)16-s + 6.61i·17-s + ⋯ |
L(s) = 1 | + (0.496 − 1.03i)2-s + (−0.730 − 0.582i)3-s + (−0.192 − 0.241i)4-s + (−1.14 − 0.553i)5-s + (−0.962 + 0.463i)6-s + (0.526 − 0.660i)7-s + (0.770 − 0.175i)8-s + (−0.0283 − 0.124i)9-s + (−1.14 + 0.910i)10-s + (−1.06 − 0.242i)11-s + 0.288i·12-s + (0.261 − 1.14i)13-s + (−0.419 − 0.871i)14-s + (0.517 + 1.07i)15-s + (0.270 − 1.18i)16-s + 1.60i·17-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)(−0.553−0.832i)Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)(−0.553−0.832i)Λ(1−s)
Degree: |
2 |
Conductor: |
841
= 292
|
Sign: |
−0.553−0.832i
|
Analytic conductor: |
6.71541 |
Root analytic conductor: |
2.59141 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ841(651,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 841, ( :1/2), −0.553−0.832i)
|
Particular Values
L(1) |
≈ |
0.426267+0.795633i |
L(21) |
≈ |
0.426267+0.795633i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+(−0.702+1.45i)T+(−1.24−1.56i)T2 |
| 3 | 1+(1.26+1.00i)T+(0.667+2.92i)T2 |
| 5 | 1+(2.57+1.23i)T+(3.11+3.90i)T2 |
| 7 | 1+(−1.39+1.74i)T+(−1.55−6.82i)T2 |
| 11 | 1+(3.52+0.805i)T+(9.91+4.77i)T2 |
| 13 | 1+(−0.942+4.12i)T+(−11.7−5.64i)T2 |
| 17 | 1−6.61iT−17T2 |
| 19 | 1+(−1.44+1.15i)T+(4.22−18.5i)T2 |
| 23 | 1+(2.91−1.40i)T+(14.3−17.9i)T2 |
| 31 | 1+(0.473−0.982i)T+(−19.3−24.2i)T2 |
| 37 | 1+(8.48−1.93i)T+(33.3−16.0i)T2 |
| 41 | 1+2.85iT−41T2 |
| 43 | 1+(1.19+2.49i)T+(−26.8+33.6i)T2 |
| 47 | 1+(−6.82−1.55i)T+(42.3+20.3i)T2 |
| 53 | 1+(−1.80−0.867i)T+(33.0+41.4i)T2 |
| 59 | 1+5.09T+59T2 |
| 61 | 1+(1.26+1.00i)T+(13.5+59.4i)T2 |
| 67 | 1+(2.33+10.2i)T+(−60.3+29.0i)T2 |
| 71 | 1+(−0.339+1.48i)T+(−63.9−30.8i)T2 |
| 73 | 1+(−0.126−0.262i)T+(−45.5+57.0i)T2 |
| 79 | 1+(4.96−1.13i)T+(71.1−34.2i)T2 |
| 83 | 1+(−4.95−6.21i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−3.77+7.84i)T+(−55.4−69.5i)T2 |
| 97 | 1+(−12.9+10.3i)T+(21.5−94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.27093542373065654329610693818, −8.567514438542624997808575474724, −7.82699665260115446940160752637, −7.31135124162516674478192776900, −5.89651595437069971599711176366, −4.98407613907793877128240406886, −3.97760020827178767522547788574, −3.25127565560301820916385963631, −1.56928935141808877983371639217, −0.41539061033976021464472401644,
2.33096986653157171035170938966, 3.93058604844741250675204909030, 4.87738914011370768477976360317, 5.29853529150241532320659039234, 6.35668065614838897978663760420, 7.36468956214472346083682027704, 7.78266430533235991378141946298, 8.846451309759034450840125475590, 10.14985526883008795582614869255, 10.84128443867313087930849641866