L(s) = 1 | + (0.702 − 1.45i)2-s + (−1.26 − 1.00i)3-s + (−0.385 − 0.483i)4-s + (−2.57 − 1.23i)5-s + (−2.35 + 1.13i)6-s + (1.39 − 1.74i)7-s + (2.18 − 0.497i)8-s + (−0.0849 − 0.372i)9-s + (−3.61 + 2.87i)10-s + (−3.52 − 0.805i)11-s + 1.00i·12-s + (0.942 − 4.12i)13-s + (−1.56 − 3.25i)14-s + (2.00 + 4.16i)15-s + (1.08 − 4.73i)16-s + 6.61i·17-s + ⋯ |
L(s) = 1 | + (0.496 − 1.03i)2-s + (−0.730 − 0.582i)3-s + (−0.192 − 0.241i)4-s + (−1.14 − 0.553i)5-s + (−0.962 + 0.463i)6-s + (0.526 − 0.660i)7-s + (0.770 − 0.175i)8-s + (−0.0283 − 0.124i)9-s + (−1.14 + 0.910i)10-s + (−1.06 − 0.242i)11-s + 0.288i·12-s + (0.261 − 1.14i)13-s + (−0.419 − 0.871i)14-s + (0.517 + 1.07i)15-s + (0.270 − 1.18i)16-s + 1.60i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.553 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.553 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.426267 + 0.795633i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.426267 + 0.795633i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 29 | \( 1 \) |
good | 2 | \( 1 + (-0.702 + 1.45i)T + (-1.24 - 1.56i)T^{2} \) |
| 3 | \( 1 + (1.26 + 1.00i)T + (0.667 + 2.92i)T^{2} \) |
| 5 | \( 1 + (2.57 + 1.23i)T + (3.11 + 3.90i)T^{2} \) |
| 7 | \( 1 + (-1.39 + 1.74i)T + (-1.55 - 6.82i)T^{2} \) |
| 11 | \( 1 + (3.52 + 0.805i)T + (9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (-0.942 + 4.12i)T + (-11.7 - 5.64i)T^{2} \) |
| 17 | \( 1 - 6.61iT - 17T^{2} \) |
| 19 | \( 1 + (-1.44 + 1.15i)T + (4.22 - 18.5i)T^{2} \) |
| 23 | \( 1 + (2.91 - 1.40i)T + (14.3 - 17.9i)T^{2} \) |
| 31 | \( 1 + (0.473 - 0.982i)T + (-19.3 - 24.2i)T^{2} \) |
| 37 | \( 1 + (8.48 - 1.93i)T + (33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + 2.85iT - 41T^{2} \) |
| 43 | \( 1 + (1.19 + 2.49i)T + (-26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (-6.82 - 1.55i)T + (42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (-1.80 - 0.867i)T + (33.0 + 41.4i)T^{2} \) |
| 59 | \( 1 + 5.09T + 59T^{2} \) |
| 61 | \( 1 + (1.26 + 1.00i)T + (13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 + (2.33 + 10.2i)T + (-60.3 + 29.0i)T^{2} \) |
| 71 | \( 1 + (-0.339 + 1.48i)T + (-63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (-0.126 - 0.262i)T + (-45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 + (4.96 - 1.13i)T + (71.1 - 34.2i)T^{2} \) |
| 83 | \( 1 + (-4.95 - 6.21i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (-3.77 + 7.84i)T + (-55.4 - 69.5i)T^{2} \) |
| 97 | \( 1 + (-12.9 + 10.3i)T + (21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27093542373065654329610693818, −8.567514438542624997808575474724, −7.82699665260115446940160752637, −7.31135124162516674478192776900, −5.89651595437069971599711176366, −4.98407613907793877128240406886, −3.97760020827178767522547788574, −3.25127565560301820916385963631, −1.56928935141808877983371639217, −0.41539061033976021464472401644,
2.33096986653157171035170938966, 3.93058604844741250675204909030, 4.87738914011370768477976360317, 5.29853529150241532320659039234, 6.35668065614838897978663760420, 7.36468956214472346083682027704, 7.78266430533235991378141946298, 8.846451309759034450840125475590, 10.14985526883008795582614869255, 10.84128443867313087930849641866