Properties

Label 2-29e2-1.1-c1-0-44
Degree $2$
Conductor $841$
Sign $-1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 0.618·3-s − 1.61·4-s + 3.85·5-s − 0.381·6-s − 2.23·7-s − 2.23·8-s − 2.61·9-s + 2.38·10-s − 1.38·11-s + 1.00·12-s − 0.236·13-s − 1.38·14-s − 2.38·15-s + 1.85·16-s − 4.38·17-s − 1.61·18-s − 4.85·19-s − 6.23·20-s + 1.38·21-s − 0.854·22-s − 1.23·23-s + 1.38·24-s + 9.85·25-s − 0.145·26-s + 3.47·27-s + 3.61·28-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.356·3-s − 0.809·4-s + 1.72·5-s − 0.155·6-s − 0.845·7-s − 0.790·8-s − 0.872·9-s + 0.753·10-s − 0.416·11-s + 0.288·12-s − 0.0654·13-s − 0.369·14-s − 0.615·15-s + 0.463·16-s − 1.06·17-s − 0.381·18-s − 1.11·19-s − 1.39·20-s + 0.301·21-s − 0.182·22-s − 0.257·23-s + 0.282·24-s + 1.97·25-s − 0.0286·26-s + 0.668·27-s + 0.683·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $-1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 0.618T + 2T^{2} \)
3 \( 1 + 0.618T + 3T^{2} \)
5 \( 1 - 3.85T + 5T^{2} \)
7 \( 1 + 2.23T + 7T^{2} \)
11 \( 1 + 1.38T + 11T^{2} \)
13 \( 1 + 0.236T + 13T^{2} \)
17 \( 1 + 4.38T + 17T^{2} \)
19 \( 1 + 4.85T + 19T^{2} \)
23 \( 1 + 1.23T + 23T^{2} \)
31 \( 1 + 10.0T + 31T^{2} \)
37 \( 1 - 4.70T + 37T^{2} \)
41 \( 1 - 3.85T + 41T^{2} \)
43 \( 1 + 7.23T + 43T^{2} \)
47 \( 1 + 7T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 6.09T + 59T^{2} \)
61 \( 1 + 0.618T + 61T^{2} \)
67 \( 1 + 1.52T + 67T^{2} \)
71 \( 1 - 10.4T + 71T^{2} \)
73 \( 1 + 13.7T + 73T^{2} \)
79 \( 1 + 6.09T + 79T^{2} \)
83 \( 1 + 9.94T + 83T^{2} \)
89 \( 1 - 4.70T + 89T^{2} \)
97 \( 1 - 3.56T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.711378688188144839945369600518, −9.097691096245418506206456907826, −8.405454958464993032384712060409, −6.72512851243885830412485772629, −6.03699646126926180927547171328, −5.50562936652875576665194517298, −4.56508001977196221481393428336, −3.18543640135487002394635092902, −2.13944074327352220016671955315, 0, 2.13944074327352220016671955315, 3.18543640135487002394635092902, 4.56508001977196221481393428336, 5.50562936652875576665194517298, 6.03699646126926180927547171328, 6.72512851243885830412485772629, 8.405454958464993032384712060409, 9.097691096245418506206456907826, 9.711378688188144839945369600518

Graph of the $Z$-function along the critical line