L(s) = 1 | + 0.618·2-s − 0.618·3-s − 1.61·4-s + 3.85·5-s − 0.381·6-s − 2.23·7-s − 2.23·8-s − 2.61·9-s + 2.38·10-s − 1.38·11-s + 1.00·12-s − 0.236·13-s − 1.38·14-s − 2.38·15-s + 1.85·16-s − 4.38·17-s − 1.61·18-s − 4.85·19-s − 6.23·20-s + 1.38·21-s − 0.854·22-s − 1.23·23-s + 1.38·24-s + 9.85·25-s − 0.145·26-s + 3.47·27-s + 3.61·28-s + ⋯ |
L(s) = 1 | + 0.437·2-s − 0.356·3-s − 0.809·4-s + 1.72·5-s − 0.155·6-s − 0.845·7-s − 0.790·8-s − 0.872·9-s + 0.753·10-s − 0.416·11-s + 0.288·12-s − 0.0654·13-s − 0.369·14-s − 0.615·15-s + 0.463·16-s − 1.06·17-s − 0.381·18-s − 1.11·19-s − 1.39·20-s + 0.301·21-s − 0.182·22-s − 0.257·23-s + 0.282·24-s + 1.97·25-s − 0.0286·26-s + 0.668·27-s + 0.683·28-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1−0.618T+2T2 |
| 3 | 1+0.618T+3T2 |
| 5 | 1−3.85T+5T2 |
| 7 | 1+2.23T+7T2 |
| 11 | 1+1.38T+11T2 |
| 13 | 1+0.236T+13T2 |
| 17 | 1+4.38T+17T2 |
| 19 | 1+4.85T+19T2 |
| 23 | 1+1.23T+23T2 |
| 31 | 1+10.0T+31T2 |
| 37 | 1−4.70T+37T2 |
| 41 | 1−3.85T+41T2 |
| 43 | 1+7.23T+43T2 |
| 47 | 1+7T+47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1−6.09T+59T2 |
| 61 | 1+0.618T+61T2 |
| 67 | 1+1.52T+67T2 |
| 71 | 1−10.4T+71T2 |
| 73 | 1+13.7T+73T2 |
| 79 | 1+6.09T+79T2 |
| 83 | 1+9.94T+83T2 |
| 89 | 1−4.70T+89T2 |
| 97 | 1−3.56T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.711378688188144839945369600518, −9.097691096245418506206456907826, −8.405454958464993032384712060409, −6.72512851243885830412485772629, −6.03699646126926180927547171328, −5.50562936652875576665194517298, −4.56508001977196221481393428336, −3.18543640135487002394635092902, −2.13944074327352220016671955315, 0,
2.13944074327352220016671955315, 3.18543640135487002394635092902, 4.56508001977196221481393428336, 5.50562936652875576665194517298, 6.03699646126926180927547171328, 6.72512851243885830412485772629, 8.405454958464993032384712060409, 9.097691096245418506206456907826, 9.711378688188144839945369600518