Properties

Label 2-29e2-1.1-c1-0-43
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.60·2-s + 0.439·3-s + 4.77·4-s + 2.58·5-s + 1.14·6-s + 0.0751·7-s + 7.21·8-s − 2.80·9-s + 6.71·10-s − 3.77·11-s + 2.09·12-s + 0.880·13-s + 0.195·14-s + 1.13·15-s + 9.23·16-s − 3.94·17-s − 7.30·18-s − 0.713·19-s + 12.3·20-s + 0.0330·21-s − 9.83·22-s + 1.17·23-s + 3.17·24-s + 1.65·25-s + 2.29·26-s − 2.55·27-s + 0.358·28-s + ⋯
L(s)  = 1  + 1.84·2-s + 0.253·3-s + 2.38·4-s + 1.15·5-s + 0.466·6-s + 0.0283·7-s + 2.55·8-s − 0.935·9-s + 2.12·10-s − 1.13·11-s + 0.605·12-s + 0.244·13-s + 0.0522·14-s + 0.292·15-s + 2.30·16-s − 0.955·17-s − 1.72·18-s − 0.163·19-s + 2.75·20-s + 0.00720·21-s − 2.09·22-s + 0.245·23-s + 0.647·24-s + 0.331·25-s + 0.449·26-s − 0.490·27-s + 0.0677·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.291505470\)
\(L(\frac12)\) \(\approx\) \(5.291505470\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 2.60T + 2T^{2} \)
3 \( 1 - 0.439T + 3T^{2} \)
5 \( 1 - 2.58T + 5T^{2} \)
7 \( 1 - 0.0751T + 7T^{2} \)
11 \( 1 + 3.77T + 11T^{2} \)
13 \( 1 - 0.880T + 13T^{2} \)
17 \( 1 + 3.94T + 17T^{2} \)
19 \( 1 + 0.713T + 19T^{2} \)
23 \( 1 - 1.17T + 23T^{2} \)
31 \( 1 + 5.15T + 31T^{2} \)
37 \( 1 - 3.08T + 37T^{2} \)
41 \( 1 + 6.67T + 41T^{2} \)
43 \( 1 - 8.31T + 43T^{2} \)
47 \( 1 - 10.5T + 47T^{2} \)
53 \( 1 - 5.55T + 53T^{2} \)
59 \( 1 - 9.91T + 59T^{2} \)
61 \( 1 + 3.56T + 61T^{2} \)
67 \( 1 - 4.93T + 67T^{2} \)
71 \( 1 - 4.90T + 71T^{2} \)
73 \( 1 - 8.90T + 73T^{2} \)
79 \( 1 + 13.1T + 79T^{2} \)
83 \( 1 - 16.9T + 83T^{2} \)
89 \( 1 + 6.79T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64618749814503829067870753305, −9.456118586582519097465682639865, −8.399289248501288264175471708756, −7.26775776102463387477267453413, −6.29339489313863039646455919396, −5.61819967567819413876380319343, −5.04751906510849681136087079073, −3.83789858748315098091179280535, −2.67682171808030688619501530470, −2.13695401119681074116262747267, 2.13695401119681074116262747267, 2.67682171808030688619501530470, 3.83789858748315098091179280535, 5.04751906510849681136087079073, 5.61819967567819413876380319343, 6.29339489313863039646455919396, 7.26775776102463387477267453413, 8.399289248501288264175471708756, 9.456118586582519097465682639865, 10.64618749814503829067870753305

Graph of the $Z$-function along the critical line