Properties

Label 2-29e2-1.1-c1-0-35
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.54·2-s + 2.93·3-s + 0.400·4-s − 0.454·5-s + 4.54·6-s + 3.41·7-s − 2.47·8-s + 5.61·9-s − 0.703·10-s + 1.46·11-s + 1.17·12-s − 3.08·13-s + 5.28·14-s − 1.33·15-s − 4.64·16-s − 2.82·17-s + 8.69·18-s + 2.29·19-s − 0.181·20-s + 10.0·21-s + 2.26·22-s + 0.534·23-s − 7.27·24-s − 4.79·25-s − 4.78·26-s + 7.66·27-s + 1.36·28-s + ⋯
L(s)  = 1  + 1.09·2-s + 1.69·3-s + 0.200·4-s − 0.203·5-s + 1.85·6-s + 1.29·7-s − 0.876·8-s + 1.87·9-s − 0.222·10-s + 0.441·11-s + 0.339·12-s − 0.856·13-s + 1.41·14-s − 0.344·15-s − 1.16·16-s − 0.684·17-s + 2.04·18-s + 0.525·19-s − 0.0406·20-s + 2.18·21-s + 0.483·22-s + 0.111·23-s − 1.48·24-s − 0.958·25-s − 0.937·26-s + 1.47·27-s + 0.258·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.381915323\)
\(L(\frac12)\) \(\approx\) \(4.381915323\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 1.54T + 2T^{2} \)
3 \( 1 - 2.93T + 3T^{2} \)
5 \( 1 + 0.454T + 5T^{2} \)
7 \( 1 - 3.41T + 7T^{2} \)
11 \( 1 - 1.46T + 11T^{2} \)
13 \( 1 + 3.08T + 13T^{2} \)
17 \( 1 + 2.82T + 17T^{2} \)
19 \( 1 - 2.29T + 19T^{2} \)
23 \( 1 - 0.534T + 23T^{2} \)
31 \( 1 + 3.58T + 31T^{2} \)
37 \( 1 - 7.12T + 37T^{2} \)
41 \( 1 + 4.43T + 41T^{2} \)
43 \( 1 + 4.12T + 43T^{2} \)
47 \( 1 - 0.179T + 47T^{2} \)
53 \( 1 - 3.08T + 53T^{2} \)
59 \( 1 - 13.2T + 59T^{2} \)
61 \( 1 + 1.88T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 - 4.51T + 71T^{2} \)
73 \( 1 - 8.27T + 73T^{2} \)
79 \( 1 + 13.8T + 79T^{2} \)
83 \( 1 + 2.45T + 83T^{2} \)
89 \( 1 + 13.4T + 89T^{2} \)
97 \( 1 + 4.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.948693524892170311092352177131, −9.196813388617659480432394696822, −8.472176906533512047544473408575, −7.75882257918198549383868254870, −6.90278484837687647942897983621, −5.45278291625261874891366651975, −4.50363661666754434962382718188, −3.90945165346639574194262277113, −2.83765543950280123061958949592, −1.87568140678530105886970604329, 1.87568140678530105886970604329, 2.83765543950280123061958949592, 3.90945165346639574194262277113, 4.50363661666754434962382718188, 5.45278291625261874891366651975, 6.90278484837687647942897983621, 7.75882257918198549383868254870, 8.472176906533512047544473408575, 9.196813388617659480432394696822, 9.948693524892170311092352177131

Graph of the $Z$-function along the critical line