L(s) = 1 | − 1.61·2-s + 1.61·3-s + 0.618·4-s − 2.85·5-s − 2.61·6-s + 2.23·7-s + 2.23·8-s − 0.381·9-s + 4.61·10-s − 3.61·11-s + 1.00·12-s + 4.23·13-s − 3.61·14-s − 4.61·15-s − 4.85·16-s − 6.61·17-s + 0.618·18-s + 1.85·19-s − 1.76·20-s + 3.61·21-s + 5.85·22-s + 3.23·23-s + 3.61·24-s + 3.14·25-s − 6.85·26-s − 5.47·27-s + 1.38·28-s + ⋯ |
L(s) = 1 | − 1.14·2-s + 0.934·3-s + 0.309·4-s − 1.27·5-s − 1.06·6-s + 0.845·7-s + 0.790·8-s − 0.127·9-s + 1.46·10-s − 1.09·11-s + 0.288·12-s + 1.17·13-s − 0.966·14-s − 1.19·15-s − 1.21·16-s − 1.60·17-s + 0.145·18-s + 0.425·19-s − 0.394·20-s + 0.789·21-s + 1.24·22-s + 0.674·23-s + 0.738·24-s + 0.629·25-s − 1.34·26-s − 1.05·27-s + 0.261·28-s + ⋯ |
Λ(s)=(=(841s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(841s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1 |
good | 2 | 1+1.61T+2T2 |
| 3 | 1−1.61T+3T2 |
| 5 | 1+2.85T+5T2 |
| 7 | 1−2.23T+7T2 |
| 11 | 1+3.61T+11T2 |
| 13 | 1−4.23T+13T2 |
| 17 | 1+6.61T+17T2 |
| 19 | 1−1.85T+19T2 |
| 23 | 1−3.23T+23T2 |
| 31 | 1−1.09T+31T2 |
| 37 | 1+8.70T+37T2 |
| 41 | 1+2.85T+41T2 |
| 43 | 1+2.76T+43T2 |
| 47 | 1+7T+47T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+5.09T+59T2 |
| 61 | 1−1.61T+61T2 |
| 67 | 1+10.4T+67T2 |
| 71 | 1−1.52T+71T2 |
| 73 | 1+0.291T+73T2 |
| 79 | 1−5.09T+79T2 |
| 83 | 1−7.94T+83T2 |
| 89 | 1+8.70T+89T2 |
| 97 | 1+16.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.453766446592641792838607570399, −8.583496549012541642589046674846, −8.318697189967849552966517337284, −7.74168767004205784245139163213, −6.83918953864746637229187488986, −5.11913862042912634519027874535, −4.19535437260133487445131990904, −3.10535176000416497470360599770, −1.73987673421271270695939834898, 0,
1.73987673421271270695939834898, 3.10535176000416497470360599770, 4.19535437260133487445131990904, 5.11913862042912634519027874535, 6.83918953864746637229187488986, 7.74168767004205784245139163213, 8.318697189967849552966517337284, 8.583496549012541642589046674846, 9.453766446592641792838607570399