Properties

Label 2-29e2-1.1-c1-0-31
Degree $2$
Conductor $841$
Sign $-1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 1.61·3-s + 0.618·4-s − 2.85·5-s − 2.61·6-s + 2.23·7-s + 2.23·8-s − 0.381·9-s + 4.61·10-s − 3.61·11-s + 1.00·12-s + 4.23·13-s − 3.61·14-s − 4.61·15-s − 4.85·16-s − 6.61·17-s + 0.618·18-s + 1.85·19-s − 1.76·20-s + 3.61·21-s + 5.85·22-s + 3.23·23-s + 3.61·24-s + 3.14·25-s − 6.85·26-s − 5.47·27-s + 1.38·28-s + ⋯
L(s)  = 1  − 1.14·2-s + 0.934·3-s + 0.309·4-s − 1.27·5-s − 1.06·6-s + 0.845·7-s + 0.790·8-s − 0.127·9-s + 1.46·10-s − 1.09·11-s + 0.288·12-s + 1.17·13-s − 0.966·14-s − 1.19·15-s − 1.21·16-s − 1.60·17-s + 0.145·18-s + 0.425·19-s − 0.394·20-s + 0.789·21-s + 1.24·22-s + 0.674·23-s + 0.738·24-s + 0.629·25-s − 1.34·26-s − 1.05·27-s + 0.261·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $-1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 + 1.61T + 2T^{2} \)
3 \( 1 - 1.61T + 3T^{2} \)
5 \( 1 + 2.85T + 5T^{2} \)
7 \( 1 - 2.23T + 7T^{2} \)
11 \( 1 + 3.61T + 11T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 + 6.61T + 17T^{2} \)
19 \( 1 - 1.85T + 19T^{2} \)
23 \( 1 - 3.23T + 23T^{2} \)
31 \( 1 - 1.09T + 31T^{2} \)
37 \( 1 + 8.70T + 37T^{2} \)
41 \( 1 + 2.85T + 41T^{2} \)
43 \( 1 + 2.76T + 43T^{2} \)
47 \( 1 + 7T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 5.09T + 59T^{2} \)
61 \( 1 - 1.61T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 - 1.52T + 71T^{2} \)
73 \( 1 + 0.291T + 73T^{2} \)
79 \( 1 - 5.09T + 79T^{2} \)
83 \( 1 - 7.94T + 83T^{2} \)
89 \( 1 + 8.70T + 89T^{2} \)
97 \( 1 + 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.453766446592641792838607570399, −8.583496549012541642589046674846, −8.318697189967849552966517337284, −7.74168767004205784245139163213, −6.83918953864746637229187488986, −5.11913862042912634519027874535, −4.19535437260133487445131990904, −3.10535176000416497470360599770, −1.73987673421271270695939834898, 0, 1.73987673421271270695939834898, 3.10535176000416497470360599770, 4.19535437260133487445131990904, 5.11913862042912634519027874535, 6.83918953864746637229187488986, 7.74168767004205784245139163213, 8.318697189967849552966517337284, 8.583496549012541642589046674846, 9.453766446592641792838607570399

Graph of the $Z$-function along the critical line