Properties

Label 2-29e2-1.1-c1-0-29
Degree $2$
Conductor $841$
Sign $-1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.445·2-s − 1.24·3-s − 1.80·4-s + 0.692·5-s + 0.554·6-s + 0.356·7-s + 1.69·8-s − 1.44·9-s − 0.307·10-s + 4.93·11-s + 2.24·12-s − 5.65·13-s − 0.158·14-s − 0.862·15-s + 2.85·16-s + 4.49·17-s + 0.643·18-s − 2.35·19-s − 1.24·20-s − 0.445·21-s − 2.19·22-s + 2.29·23-s − 2.10·24-s − 4.52·25-s + 2.51·26-s + 5.54·27-s − 0.643·28-s + ⋯
L(s)  = 1  − 0.314·2-s − 0.719·3-s − 0.900·4-s + 0.309·5-s + 0.226·6-s + 0.134·7-s + 0.598·8-s − 0.481·9-s − 0.0973·10-s + 1.48·11-s + 0.648·12-s − 1.56·13-s − 0.0424·14-s − 0.222·15-s + 0.712·16-s + 1.08·17-s + 0.151·18-s − 0.540·19-s − 0.278·20-s − 0.0971·21-s − 0.468·22-s + 0.478·23-s − 0.430·24-s − 0.904·25-s + 0.493·26-s + 1.06·27-s − 0.121·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $-1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 + 0.445T + 2T^{2} \)
3 \( 1 + 1.24T + 3T^{2} \)
5 \( 1 - 0.692T + 5T^{2} \)
7 \( 1 - 0.356T + 7T^{2} \)
11 \( 1 - 4.93T + 11T^{2} \)
13 \( 1 + 5.65T + 13T^{2} \)
17 \( 1 - 4.49T + 17T^{2} \)
19 \( 1 + 2.35T + 19T^{2} \)
23 \( 1 - 2.29T + 23T^{2} \)
31 \( 1 + 6.69T + 31T^{2} \)
37 \( 1 + 4.93T + 37T^{2} \)
41 \( 1 - 3.10T + 41T^{2} \)
43 \( 1 + 3.40T + 43T^{2} \)
47 \( 1 + 6.44T + 47T^{2} \)
53 \( 1 + 4.69T + 53T^{2} \)
59 \( 1 + 12.4T + 59T^{2} \)
61 \( 1 + 1.64T + 61T^{2} \)
67 \( 1 + 2.32T + 67T^{2} \)
71 \( 1 + 7.33T + 71T^{2} \)
73 \( 1 - 5.62T + 73T^{2} \)
79 \( 1 + 4.66T + 79T^{2} \)
83 \( 1 - 4.45T + 83T^{2} \)
89 \( 1 + 5.67T + 89T^{2} \)
97 \( 1 + 0.180T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.634571426092388048678734328271, −9.180186628378244183271390984288, −8.162964463067174675005997241239, −7.23128557661409761097530544170, −6.16916301824279904719825176654, −5.30258749551361911898967738788, −4.55850750782646412732879996716, −3.35950213102342294287071945153, −1.58168237263676207010410443459, 0, 1.58168237263676207010410443459, 3.35950213102342294287071945153, 4.55850750782646412732879996716, 5.30258749551361911898967738788, 6.16916301824279904719825176654, 7.23128557661409761097530544170, 8.162964463067174675005997241239, 9.180186628378244183271390984288, 9.634571426092388048678734328271

Graph of the $Z$-function along the critical line