Properties

Label 2-29e2-1.1-c1-0-28
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.67·2-s − 1.58·3-s + 5.17·4-s + 0.0973·5-s − 4.23·6-s + 0.0377·7-s + 8.51·8-s − 0.498·9-s + 0.260·10-s + 2.07·11-s − 8.18·12-s + 2.37·13-s + 0.101·14-s − 0.153·15-s + 12.4·16-s + 4.23·17-s − 1.33·18-s + 5.29·19-s + 0.503·20-s − 0.0596·21-s + 5.55·22-s − 6.91·23-s − 13.4·24-s − 4.99·25-s + 6.35·26-s + 5.53·27-s + 0.195·28-s + ⋯
L(s)  = 1  + 1.89·2-s − 0.913·3-s + 2.58·4-s + 0.0435·5-s − 1.72·6-s + 0.0142·7-s + 3.00·8-s − 0.166·9-s + 0.0824·10-s + 0.625·11-s − 2.36·12-s + 0.657·13-s + 0.0269·14-s − 0.0397·15-s + 3.11·16-s + 1.02·17-s − 0.314·18-s + 1.21·19-s + 0.112·20-s − 0.0130·21-s + 1.18·22-s − 1.44·23-s − 2.74·24-s − 0.998·25-s + 1.24·26-s + 1.06·27-s + 0.0368·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.901251169\)
\(L(\frac12)\) \(\approx\) \(3.901251169\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 - 2.67T + 2T^{2} \)
3 \( 1 + 1.58T + 3T^{2} \)
5 \( 1 - 0.0973T + 5T^{2} \)
7 \( 1 - 0.0377T + 7T^{2} \)
11 \( 1 - 2.07T + 11T^{2} \)
13 \( 1 - 2.37T + 13T^{2} \)
17 \( 1 - 4.23T + 17T^{2} \)
19 \( 1 - 5.29T + 19T^{2} \)
23 \( 1 + 6.91T + 23T^{2} \)
31 \( 1 - 1.44T + 31T^{2} \)
37 \( 1 + 8.75T + 37T^{2} \)
41 \( 1 - 3.66T + 41T^{2} \)
43 \( 1 - 2.56T + 43T^{2} \)
47 \( 1 + 7.21T + 47T^{2} \)
53 \( 1 - 4.32T + 53T^{2} \)
59 \( 1 + 5.71T + 59T^{2} \)
61 \( 1 + 6.58T + 61T^{2} \)
67 \( 1 + 1.49T + 67T^{2} \)
71 \( 1 - 5.92T + 71T^{2} \)
73 \( 1 + 5.50T + 73T^{2} \)
79 \( 1 - 2.04T + 79T^{2} \)
83 \( 1 + 9.54T + 83T^{2} \)
89 \( 1 + 12.2T + 89T^{2} \)
97 \( 1 - 0.263T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64118414300011785439852452904, −9.734263808933849848267239907876, −8.143593191629855246209413668962, −7.17934286264439568297156589767, −6.15423043635102841668551995989, −5.80133507376136414707557989706, −4.97967894570630313309309558780, −3.91852354897452376863342461643, −3.12254658908643189036001061818, −1.56751345940846327031364100495, 1.56751345940846327031364100495, 3.12254658908643189036001061818, 3.91852354897452376863342461643, 4.97967894570630313309309558780, 5.80133507376136414707557989706, 6.15423043635102841668551995989, 7.17934286264439568297156589767, 8.143593191629855246209413668962, 9.734263808933849848267239907876, 10.64118414300011785439852452904

Graph of the $Z$-function along the critical line