Properties

Label 2-29e2-1.1-c1-0-23
Degree $2$
Conductor $841$
Sign $1$
Analytic cond. $6.71541$
Root an. cond. $2.59141$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.51·2-s + 3.11·3-s + 0.307·4-s + 1.87·5-s − 4.73·6-s − 0.343·7-s + 2.57·8-s + 6.70·9-s − 2.84·10-s + 1.29·11-s + 0.959·12-s + 1.43·13-s + 0.521·14-s + 5.83·15-s − 4.52·16-s − 1.26·17-s − 10.1·18-s + 4.20·19-s + 0.577·20-s − 1.06·21-s − 1.96·22-s − 8.00·23-s + 8.00·24-s − 1.48·25-s − 2.18·26-s + 11.5·27-s − 0.105·28-s + ⋯
L(s)  = 1  − 1.07·2-s + 1.79·3-s + 0.153·4-s + 0.838·5-s − 1.93·6-s − 0.129·7-s + 0.908·8-s + 2.23·9-s − 0.900·10-s + 0.390·11-s + 0.276·12-s + 0.398·13-s + 0.139·14-s + 1.50·15-s − 1.13·16-s − 0.306·17-s − 2.39·18-s + 0.965·19-s + 0.129·20-s − 0.233·21-s − 0.419·22-s − 1.66·23-s + 1.63·24-s − 0.297·25-s − 0.427·26-s + 2.21·27-s − 0.0199·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 841 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(841\)    =    \(29^{2}\)
Sign: $1$
Analytic conductor: \(6.71541\)
Root analytic conductor: \(2.59141\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 841,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.878660339\)
\(L(\frac12)\) \(\approx\) \(1.878660339\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad29 \( 1 \)
good2 \( 1 + 1.51T + 2T^{2} \)
3 \( 1 - 3.11T + 3T^{2} \)
5 \( 1 - 1.87T + 5T^{2} \)
7 \( 1 + 0.343T + 7T^{2} \)
11 \( 1 - 1.29T + 11T^{2} \)
13 \( 1 - 1.43T + 13T^{2} \)
17 \( 1 + 1.26T + 17T^{2} \)
19 \( 1 - 4.20T + 19T^{2} \)
23 \( 1 + 8.00T + 23T^{2} \)
31 \( 1 - 4.35T + 31T^{2} \)
37 \( 1 - 3.08T + 37T^{2} \)
41 \( 1 - 3.71T + 41T^{2} \)
43 \( 1 + 9.21T + 43T^{2} \)
47 \( 1 - 7.25T + 47T^{2} \)
53 \( 1 + 5.20T + 53T^{2} \)
59 \( 1 + 5.46T + 59T^{2} \)
61 \( 1 - 11.6T + 61T^{2} \)
67 \( 1 + 6.41T + 67T^{2} \)
71 \( 1 - 6.47T + 71T^{2} \)
73 \( 1 + 15.1T + 73T^{2} \)
79 \( 1 + 4.56T + 79T^{2} \)
83 \( 1 - 11.1T + 83T^{2} \)
89 \( 1 - 0.692T + 89T^{2} \)
97 \( 1 + 9.50T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.732139526581757397543010328083, −9.443368331110875900934977161728, −8.564615302518252961508848549979, −8.024470337397649253677519139791, −7.22980768462754860133756575248, −6.11054942057808531214574353752, −4.54364122946016928439572769277, −3.55489400144614801589377661673, −2.30332720740516342424368601028, −1.43412250235075595051148600127, 1.43412250235075595051148600127, 2.30332720740516342424368601028, 3.55489400144614801589377661673, 4.54364122946016928439572769277, 6.11054942057808531214574353752, 7.22980768462754860133756575248, 8.024470337397649253677519139791, 8.564615302518252961508848549979, 9.443368331110875900934977161728, 9.732139526581757397543010328083

Graph of the $Z$-function along the critical line