L(s) = 1 | + (0.939 − 0.342i)5-s + (−0.173 + 0.984i)9-s + (1.70 − 0.300i)13-s + (−0.673 − 0.118i)17-s + (0.766 − 0.642i)25-s + (−0.173 + 0.300i)29-s + (−0.173 − 0.984i)37-s + (0.326 + 1.85i)41-s + (0.173 + 0.984i)45-s + (−0.766 − 0.642i)49-s + (0.592 + 1.62i)53-s + (−0.0603 − 0.342i)61-s + (1.5 − 0.866i)65-s − 1.73i·73-s + (−0.939 − 0.342i)81-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)5-s + (−0.173 + 0.984i)9-s + (1.70 − 0.300i)13-s + (−0.673 − 0.118i)17-s + (0.766 − 0.642i)25-s + (−0.173 + 0.300i)29-s + (−0.173 − 0.984i)37-s + (0.326 + 1.85i)41-s + (0.173 + 0.984i)45-s + (−0.766 − 0.642i)49-s + (0.592 + 1.62i)53-s + (−0.0603 − 0.342i)61-s + (1.5 − 0.866i)65-s − 1.73i·73-s + (−0.939 − 0.342i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.548187480\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.548187480\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.939 + 0.342i)T \) |
| 37 | \( 1 + (0.173 + 0.984i)T \) |
good | 3 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-1.70 + 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (0.673 + 0.118i)T + (0.939 + 0.342i)T^{2} \) |
| 19 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.326 - 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.592 - 1.62i)T + (-0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.0603 + 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + 1.73iT - T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 89 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (1.70 - 0.984i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.884638442422024844836210389299, −8.326583930935723024035476229852, −7.52793614719633083755645929917, −6.43532673747273445571075348313, −5.94051524257632335582977654164, −5.13920711989103652357700203723, −4.36994313719480618681011403862, −3.23705085395433695301731454958, −2.22019411561921900914954899334, −1.30613948233597428249285305261,
1.21060084276981517312490505339, 2.26268982932807197356148985107, 3.37459283632182272276564011862, 4.02643698068394531225910843631, 5.23353273421880285309750787769, 6.09242862351051351904097263499, 6.45310651844756990536185970874, 7.21096805929649188470803835735, 8.502992229712512331656653344728, 8.830162358272011834244593252361