L(s) = 1 | + (0.183 − 1.40i)2-s + (0.576 + 0.332i)3-s + (−1.93 − 0.514i)4-s + (1.60 − 2.78i)5-s + (0.572 − 0.746i)6-s + (−0.874 + 1.51i)7-s + (−1.07 + 2.61i)8-s + (−1.27 − 2.21i)9-s + (−3.61 − 2.76i)10-s − 3.96i·11-s + (−0.942 − 0.939i)12-s + (−0.268 + 0.465i)13-s + (1.96 + 1.50i)14-s + (1.85 − 1.07i)15-s + (3.46 + 1.99i)16-s + (6.04 − 3.48i)17-s + ⋯ |
L(s) = 1 | + (0.129 − 0.991i)2-s + (0.332 + 0.192i)3-s + (−0.966 − 0.257i)4-s + (0.719 − 1.24i)5-s + (0.233 − 0.304i)6-s + (−0.330 + 0.572i)7-s + (−0.380 + 0.924i)8-s + (−0.426 − 0.738i)9-s + (−1.14 − 0.875i)10-s − 1.19i·11-s + (−0.271 − 0.271i)12-s + (−0.0744 + 0.128i)13-s + (0.524 + 0.401i)14-s + (0.478 − 0.276i)15-s + (0.867 + 0.497i)16-s + (1.46 − 0.845i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.591 + 0.806i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.591 + 0.806i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.635694 - 1.25481i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.635694 - 1.25481i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.183 + 1.40i)T \) |
| 37 | \( 1 + (0.0791 - 6.08i)T \) |
good | 3 | \( 1 + (-0.576 - 0.332i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.60 + 2.78i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.874 - 1.51i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 3.96iT - 11T^{2} \) |
| 13 | \( 1 + (0.268 - 0.465i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-6.04 + 3.48i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.21 - 3.84i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.14iT - 23T^{2} \) |
| 29 | \( 1 + 3.76T + 29T^{2} \) |
| 31 | \( 1 - 1.95iT - 31T^{2} \) |
| 41 | \( 1 + (-1.70 + 2.95i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 7.07T + 43T^{2} \) |
| 47 | \( 1 - 8.02T + 47T^{2} \) |
| 53 | \( 1 + (0.341 - 0.197i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.26 - 7.38i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.607 - 1.05i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.25 - 4.18i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.54 - 4.40i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 2.30T + 73T^{2} \) |
| 79 | \( 1 + (2.04 + 1.18i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.40 - 0.812i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-13.0 + 7.51i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 16.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74118539658440950414977549602, −10.37376475658266962206017782044, −9.374736558872012846175254900924, −9.030671075082153214774328235478, −8.127182070211530543006151305853, −5.85038044515538124174414475983, −5.44989370932715167663822058799, −3.88976885059781440428835513831, −2.78483988902177535334455268988, −1.06467923377507276004379393623,
2.44354022649442880029127355255, 3.84883568667817691577728821794, 5.31920116024174605585143279781, 6.36212497362721951135410349299, 7.25031297758451518635674294996, 7.86482355552125249130844623138, 9.249667046755132491821715055843, 10.14338826671353581881991487382, 10.81156952810219857279947696702, 12.50007146245571954078516822921