L(s) = 1 | + 2.47·3-s + 1.47·5-s + 2.64·7-s + 3.11·9-s − 6.34·11-s − 5.34·13-s + 3.64·15-s − 0.715·17-s + 3.28·19-s + 6.53·21-s + 0.885·23-s − 2.83·25-s + 0.284·27-s − 0.885·29-s + 7.47·31-s − 15.6·33-s + 3.89·35-s − 37-s − 13.2·39-s − 7.75·41-s + 10.1·43-s + 4.58·45-s + 11.8·47-s − 0.0194·49-s − 1.77·51-s + 4.15·53-s − 9.34·55-s + ⋯ |
L(s) = 1 | + 1.42·3-s + 0.658·5-s + 0.998·7-s + 1.03·9-s − 1.91·11-s − 1.48·13-s + 0.940·15-s − 0.173·17-s + 0.753·19-s + 1.42·21-s + 0.184·23-s − 0.566·25-s + 0.0546·27-s − 0.164·29-s + 1.34·31-s − 2.73·33-s + 0.657·35-s − 0.164·37-s − 2.11·39-s − 1.21·41-s + 1.54·43-s + 0.683·45-s + 1.72·47-s − 0.00277·49-s − 0.247·51-s + 0.570·53-s − 1.26·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.093179495\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.093179495\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 3 | \( 1 - 2.47T + 3T^{2} \) |
| 5 | \( 1 - 1.47T + 5T^{2} \) |
| 7 | \( 1 - 2.64T + 7T^{2} \) |
| 11 | \( 1 + 6.34T + 11T^{2} \) |
| 13 | \( 1 + 5.34T + 13T^{2} \) |
| 17 | \( 1 + 0.715T + 17T^{2} \) |
| 19 | \( 1 - 3.28T + 19T^{2} \) |
| 23 | \( 1 - 0.885T + 23T^{2} \) |
| 29 | \( 1 + 0.885T + 29T^{2} \) |
| 31 | \( 1 - 7.47T + 31T^{2} \) |
| 41 | \( 1 + 7.75T + 41T^{2} \) |
| 43 | \( 1 - 10.1T + 43T^{2} \) |
| 47 | \( 1 - 11.8T + 47T^{2} \) |
| 53 | \( 1 - 4.15T + 53T^{2} \) |
| 59 | \( 1 + 12.1T + 59T^{2} \) |
| 61 | \( 1 - 3.81T + 61T^{2} \) |
| 67 | \( 1 + 5.32T + 67T^{2} \) |
| 71 | \( 1 - 2.87T + 71T^{2} \) |
| 73 | \( 1 + 8.34T + 73T^{2} \) |
| 79 | \( 1 + 1.83T + 79T^{2} \) |
| 83 | \( 1 - 2.15T + 83T^{2} \) |
| 89 | \( 1 + 1.89T + 89T^{2} \) |
| 97 | \( 1 - 15.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85605980907732818955785938353, −10.50667674794395328904484860416, −9.844634532495756245168498798666, −8.863899326492502878201953865086, −7.83502155766063885308161734339, −7.46566984707687402433081972410, −5.54008877409685999977956279070, −4.63674996738275428236758451517, −2.84942306405856913627278075228, −2.14416178081521092823242555565,
2.14416178081521092823242555565, 2.84942306405856913627278075228, 4.63674996738275428236758451517, 5.54008877409685999977956279070, 7.46566984707687402433081972410, 7.83502155766063885308161734339, 8.863899326492502878201953865086, 9.844634532495756245168498798666, 10.50667674794395328904484860416, 11.85605980907732818955785938353