L(s) = 1 | + 2.47·3-s + 1.47·5-s + 2.64·7-s + 3.11·9-s − 6.34·11-s − 5.34·13-s + 3.64·15-s − 0.715·17-s + 3.28·19-s + 6.53·21-s + 0.885·23-s − 2.83·25-s + 0.284·27-s − 0.885·29-s + 7.47·31-s − 15.6·33-s + 3.89·35-s − 37-s − 13.2·39-s − 7.75·41-s + 10.1·43-s + 4.58·45-s + 11.8·47-s − 0.0194·49-s − 1.77·51-s + 4.15·53-s − 9.34·55-s + ⋯ |
L(s) = 1 | + 1.42·3-s + 0.658·5-s + 0.998·7-s + 1.03·9-s − 1.91·11-s − 1.48·13-s + 0.940·15-s − 0.173·17-s + 0.753·19-s + 1.42·21-s + 0.184·23-s − 0.566·25-s + 0.0546·27-s − 0.164·29-s + 1.34·31-s − 2.73·33-s + 0.657·35-s − 0.164·37-s − 2.11·39-s − 1.21·41-s + 1.54·43-s + 0.683·45-s + 1.72·47-s − 0.00277·49-s − 0.247·51-s + 0.570·53-s − 1.26·55-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.093179495 |
L(21) |
≈ |
2.093179495 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+T |
good | 3 | 1−2.47T+3T2 |
| 5 | 1−1.47T+5T2 |
| 7 | 1−2.64T+7T2 |
| 11 | 1+6.34T+11T2 |
| 13 | 1+5.34T+13T2 |
| 17 | 1+0.715T+17T2 |
| 19 | 1−3.28T+19T2 |
| 23 | 1−0.885T+23T2 |
| 29 | 1+0.885T+29T2 |
| 31 | 1−7.47T+31T2 |
| 41 | 1+7.75T+41T2 |
| 43 | 1−10.1T+43T2 |
| 47 | 1−11.8T+47T2 |
| 53 | 1−4.15T+53T2 |
| 59 | 1+12.1T+59T2 |
| 61 | 1−3.81T+61T2 |
| 67 | 1+5.32T+67T2 |
| 71 | 1−2.87T+71T2 |
| 73 | 1+8.34T+73T2 |
| 79 | 1+1.83T+79T2 |
| 83 | 1−2.15T+83T2 |
| 89 | 1+1.89T+89T2 |
| 97 | 1−15.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85605980907732818955785938353, −10.50667674794395328904484860416, −9.844634532495756245168498798666, −8.863899326492502878201953865086, −7.83502155766063885308161734339, −7.46566984707687402433081972410, −5.54008877409685999977956279070, −4.63674996738275428236758451517, −2.84942306405856913627278075228, −2.14416178081521092823242555565,
2.14416178081521092823242555565, 2.84942306405856913627278075228, 4.63674996738275428236758451517, 5.54008877409685999977956279070, 7.46566984707687402433081972410, 7.83502155766063885308161734339, 8.863899326492502878201953865086, 9.844634532495756245168498798666, 10.50667674794395328904484860416, 11.85605980907732818955785938353