L(s) = 1 | − 1.93·3-s − 2.93·5-s + 4.68·7-s + 0.745·9-s + 0.762·11-s + 1.76·13-s + 5.68·15-s + 3.36·17-s + 7.36·19-s − 9.06·21-s + 3.25·23-s + 3.61·25-s + 4.36·27-s − 3.25·29-s + 3.06·31-s − 1.47·33-s − 13.7·35-s − 37-s − 3.41·39-s − 7.42·41-s − 12.2·43-s − 2.18·45-s + 0.302·47-s + 14.9·49-s − 6.50·51-s + 5.53·53-s − 2.23·55-s + ⋯ |
L(s) = 1 | − 1.11·3-s − 1.31·5-s + 1.76·7-s + 0.248·9-s + 0.229·11-s + 0.488·13-s + 1.46·15-s + 0.815·17-s + 1.68·19-s − 1.97·21-s + 0.678·23-s + 0.723·25-s + 0.839·27-s − 0.604·29-s + 0.550·31-s − 0.256·33-s − 2.32·35-s − 0.164·37-s − 0.546·39-s − 1.15·41-s − 1.86·43-s − 0.326·45-s + 0.0440·47-s + 2.13·49-s − 0.911·51-s + 0.760·53-s − 0.301·55-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8868395293 |
L(21) |
≈ |
0.8868395293 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+T |
good | 3 | 1+1.93T+3T2 |
| 5 | 1+2.93T+5T2 |
| 7 | 1−4.68T+7T2 |
| 11 | 1−0.762T+11T2 |
| 13 | 1−1.76T+13T2 |
| 17 | 1−3.36T+17T2 |
| 19 | 1−7.36T+19T2 |
| 23 | 1−3.25T+23T2 |
| 29 | 1+3.25T+29T2 |
| 31 | 1−3.06T+31T2 |
| 41 | 1+7.42T+41T2 |
| 43 | 1+12.2T+43T2 |
| 47 | 1−0.302T+47T2 |
| 53 | 1−5.53T+53T2 |
| 59 | 1−10.2T+59T2 |
| 61 | 1−12.2T+61T2 |
| 67 | 1+13.1T+67T2 |
| 71 | 1−0.173T+71T2 |
| 73 | 1+1.23T+73T2 |
| 79 | 1−4.61T+79T2 |
| 83 | 1−3.53T+83T2 |
| 89 | 1−15.7T+89T2 |
| 97 | 1+16.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.65184239375590915359083015172, −11.29121850641396720850685794947, −10.24559456423596935575688897165, −8.627342280285411058871019505602, −7.88637576847425579767411056500, −7.01388337253448340997932032971, −5.46159198185251203645560997923, −4.86530737922999155740176177980, −3.56361983012300239336936775696, −1.12037709954869759125968838726,
1.12037709954869759125968838726, 3.56361983012300239336936775696, 4.86530737922999155740176177980, 5.46159198185251203645560997923, 7.01388337253448340997932032971, 7.88637576847425579767411056500, 8.627342280285411058871019505602, 10.24559456423596935575688897165, 11.29121850641396720850685794947, 11.65184239375590915359083015172