Properties

Label 2-296-1.1-c1-0-1
Degree $2$
Conductor $296$
Sign $1$
Analytic cond. $2.36357$
Root an. cond. $1.53739$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.93·3-s − 2.93·5-s + 4.68·7-s + 0.745·9-s + 0.762·11-s + 1.76·13-s + 5.68·15-s + 3.36·17-s + 7.36·19-s − 9.06·21-s + 3.25·23-s + 3.61·25-s + 4.36·27-s − 3.25·29-s + 3.06·31-s − 1.47·33-s − 13.7·35-s − 37-s − 3.41·39-s − 7.42·41-s − 12.2·43-s − 2.18·45-s + 0.302·47-s + 14.9·49-s − 6.50·51-s + 5.53·53-s − 2.23·55-s + ⋯
L(s)  = 1  − 1.11·3-s − 1.31·5-s + 1.76·7-s + 0.248·9-s + 0.229·11-s + 0.488·13-s + 1.46·15-s + 0.815·17-s + 1.68·19-s − 1.97·21-s + 0.678·23-s + 0.723·25-s + 0.839·27-s − 0.604·29-s + 0.550·31-s − 0.256·33-s − 2.32·35-s − 0.164·37-s − 0.546·39-s − 1.15·41-s − 1.86·43-s − 0.326·45-s + 0.0440·47-s + 2.13·49-s − 0.911·51-s + 0.760·53-s − 0.301·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296\)    =    \(2^{3} \cdot 37\)
Sign: $1$
Analytic conductor: \(2.36357\)
Root analytic conductor: \(1.53739\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 296,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8868395293\)
\(L(\frac12)\) \(\approx\) \(0.8868395293\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + 1.93T + 3T^{2} \)
5 \( 1 + 2.93T + 5T^{2} \)
7 \( 1 - 4.68T + 7T^{2} \)
11 \( 1 - 0.762T + 11T^{2} \)
13 \( 1 - 1.76T + 13T^{2} \)
17 \( 1 - 3.36T + 17T^{2} \)
19 \( 1 - 7.36T + 19T^{2} \)
23 \( 1 - 3.25T + 23T^{2} \)
29 \( 1 + 3.25T + 29T^{2} \)
31 \( 1 - 3.06T + 31T^{2} \)
41 \( 1 + 7.42T + 41T^{2} \)
43 \( 1 + 12.2T + 43T^{2} \)
47 \( 1 - 0.302T + 47T^{2} \)
53 \( 1 - 5.53T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 + 13.1T + 67T^{2} \)
71 \( 1 - 0.173T + 71T^{2} \)
73 \( 1 + 1.23T + 73T^{2} \)
79 \( 1 - 4.61T + 79T^{2} \)
83 \( 1 - 3.53T + 83T^{2} \)
89 \( 1 - 15.7T + 89T^{2} \)
97 \( 1 + 16.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.65184239375590915359083015172, −11.29121850641396720850685794947, −10.24559456423596935575688897165, −8.627342280285411058871019505602, −7.88637576847425579767411056500, −7.01388337253448340997932032971, −5.46159198185251203645560997923, −4.86530737922999155740176177980, −3.56361983012300239336936775696, −1.12037709954869759125968838726, 1.12037709954869759125968838726, 3.56361983012300239336936775696, 4.86530737922999155740176177980, 5.46159198185251203645560997923, 7.01388337253448340997932032971, 7.88637576847425579767411056500, 8.627342280285411058871019505602, 10.24559456423596935575688897165, 11.29121850641396720850685794947, 11.65184239375590915359083015172

Graph of the $Z$-function along the critical line