L(s) = 1 | − 1.93·3-s − 2.93·5-s + 4.68·7-s + 0.745·9-s + 0.762·11-s + 1.76·13-s + 5.68·15-s + 3.36·17-s + 7.36·19-s − 9.06·21-s + 3.25·23-s + 3.61·25-s + 4.36·27-s − 3.25·29-s + 3.06·31-s − 1.47·33-s − 13.7·35-s − 37-s − 3.41·39-s − 7.42·41-s − 12.2·43-s − 2.18·45-s + 0.302·47-s + 14.9·49-s − 6.50·51-s + 5.53·53-s − 2.23·55-s + ⋯ |
L(s) = 1 | − 1.11·3-s − 1.31·5-s + 1.76·7-s + 0.248·9-s + 0.229·11-s + 0.488·13-s + 1.46·15-s + 0.815·17-s + 1.68·19-s − 1.97·21-s + 0.678·23-s + 0.723·25-s + 0.839·27-s − 0.604·29-s + 0.550·31-s − 0.256·33-s − 2.32·35-s − 0.164·37-s − 0.546·39-s − 1.15·41-s − 1.86·43-s − 0.326·45-s + 0.0440·47-s + 2.13·49-s − 0.911·51-s + 0.760·53-s − 0.301·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8868395293\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8868395293\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + T \) |
good | 3 | \( 1 + 1.93T + 3T^{2} \) |
| 5 | \( 1 + 2.93T + 5T^{2} \) |
| 7 | \( 1 - 4.68T + 7T^{2} \) |
| 11 | \( 1 - 0.762T + 11T^{2} \) |
| 13 | \( 1 - 1.76T + 13T^{2} \) |
| 17 | \( 1 - 3.36T + 17T^{2} \) |
| 19 | \( 1 - 7.36T + 19T^{2} \) |
| 23 | \( 1 - 3.25T + 23T^{2} \) |
| 29 | \( 1 + 3.25T + 29T^{2} \) |
| 31 | \( 1 - 3.06T + 31T^{2} \) |
| 41 | \( 1 + 7.42T + 41T^{2} \) |
| 43 | \( 1 + 12.2T + 43T^{2} \) |
| 47 | \( 1 - 0.302T + 47T^{2} \) |
| 53 | \( 1 - 5.53T + 53T^{2} \) |
| 59 | \( 1 - 10.2T + 59T^{2} \) |
| 61 | \( 1 - 12.2T + 61T^{2} \) |
| 67 | \( 1 + 13.1T + 67T^{2} \) |
| 71 | \( 1 - 0.173T + 71T^{2} \) |
| 73 | \( 1 + 1.23T + 73T^{2} \) |
| 79 | \( 1 - 4.61T + 79T^{2} \) |
| 83 | \( 1 - 3.53T + 83T^{2} \) |
| 89 | \( 1 - 15.7T + 89T^{2} \) |
| 97 | \( 1 + 16.1T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65184239375590915359083015172, −11.29121850641396720850685794947, −10.24559456423596935575688897165, −8.627342280285411058871019505602, −7.88637576847425579767411056500, −7.01388337253448340997932032971, −5.46159198185251203645560997923, −4.86530737922999155740176177980, −3.56361983012300239336936775696, −1.12037709954869759125968838726,
1.12037709954869759125968838726, 3.56361983012300239336936775696, 4.86530737922999155740176177980, 5.46159198185251203645560997923, 7.01388337253448340997932032971, 7.88637576847425579767411056500, 8.627342280285411058871019505602, 10.24559456423596935575688897165, 11.29121850641396720850685794947, 11.65184239375590915359083015172