L(s) = 1 | + (2 + 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (51.7 + 89.6i)5-s + 36·6-s − 63.9·8-s + (−40.5 − 70.1i)9-s + (−206. + 358. i)10-s + (−120. + 208. i)11-s + (72 + 124. i)12-s − 805.·13-s + 931.·15-s + (−128 − 221. i)16-s + (−646. + 1.12e3i)17-s + (162 − 280. i)18-s + (−137. − 238. i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.925 + 1.60i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.654 + 1.13i)10-s + (−0.299 + 0.518i)11-s + (0.144 + 0.249i)12-s − 1.32·13-s + 1.06·15-s + (−0.125 − 0.216i)16-s + (−0.542 + 0.939i)17-s + (0.117 − 0.204i)18-s + (−0.0875 − 0.151i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.947+0.318i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.947+0.318i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.947+0.318i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.947+0.318i)
|
Particular Values
L(3) |
≈ |
1.444589378 |
L(21) |
≈ |
1.444589378 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2−3.46i)T |
| 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(−51.7−89.6i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(120.−208.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+805.T+3.71e5T2 |
| 17 | 1+(646.−1.12e3i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(137.+238.i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(1.89e3+3.28e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1−1.22e3T+2.05e7T2 |
| 31 | 1+(−2.81e3+4.87e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−4.53e3−7.86e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−1.82e4T+1.15e8T2 |
| 43 | 1+1.17e4T+1.47e8T2 |
| 47 | 1+(1.15e4+1.99e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(8.83e3−1.52e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−9.18e3+1.59e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−5.66e3−9.80e3i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(1.80e4−3.12e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+6.34e4T+1.80e9T2 |
| 73 | 1+(2.64e4−4.58e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−2.42e4−4.20e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+1.13e5T+3.93e9T2 |
| 89 | 1+(−5.41e4−9.38e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+9.96e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50507166395273522856383458769, −10.29671552771805619636232459263, −9.744912345085819228565626336094, −8.305289134725145891190615313530, −7.29433711899035757315862484277, −6.61545259779112006506340454457, −5.86227944470570397242242344409, −4.38179243061646611440402596918, −2.79476834306928668934256448948, −2.15926633740515517148271558999,
0.29408986605787766245766384009, 1.67471991784309015324619986436, 2.81591379628559282954867351180, 4.42972253595802301193796804279, 5.06355014619340073476629186913, 5.94286353236680425702889475061, 7.76098142906066108877135266947, 8.924479093612067559738689628410, 9.512456908400316509229969372022, 10.17936909605998170693083558377