L(s) = 1 | + (2 + 3.46i)2-s + (−4.5 + 7.79i)3-s + (−7.99 + 13.8i)4-s + (43 + 74.4i)5-s − 36·6-s − 63.9·8-s + (−40.5 − 70.1i)9-s + (−172 + 297. i)10-s + (−17 + 29.4i)11-s + (−72 − 124. i)12-s + 3·13-s − 774.·15-s + (−128 − 221. i)16-s + (−952 + 1.64e3i)17-s + (162 − 280. i)18-s + (−744.5 − 1.28e3i)19-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.769 + 1.33i)5-s − 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.543 + 0.942i)10-s + (−0.0423 + 0.0733i)11-s + (−0.144 − 0.249i)12-s + 0.00492·13-s − 0.888·15-s + (−0.125 − 0.216i)16-s + (−0.798 + 1.38i)17-s + (0.117 − 0.204i)18-s + (−0.473 − 0.819i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.386+0.922i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.386+0.922i)
|
Particular Values
L(3) |
≈ |
1.169285261 |
L(21) |
≈ |
1.169285261 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2−3.46i)T |
| 3 | 1+(4.5−7.79i)T |
| 7 | 1 |
good | 5 | 1+(−43−74.4i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(17−29.4i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−3T+3.71e5T2 |
| 17 | 1+(952−1.64e3i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(744.5+1.28e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−112−193.i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+6.50e3T+2.05e7T2 |
| 31 | 1+(−865.5+1.49e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−3.81e3−6.61e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+1.54e4T+1.15e8T2 |
| 43 | 1−1.84e4T+1.47e8T2 |
| 47 | 1+(−9.23e3−1.59e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−9.97e3+1.72e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(1.59e4−2.75e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(2.88e4+4.99e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(−3.02e4+5.24e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+4.48e4T+1.80e9T2 |
| 73 | 1+(−1.04e4+1.80e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−1.52e4−2.64e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+1.10e5T+3.93e9T2 |
| 89 | 1+(2.94e4+5.10e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−1.19e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27387736229650752234088444444, −10.71931116464294747510896777831, −9.768045403887808591763810122435, −8.774284993239319606535949538733, −7.44498123599887760610706494109, −6.43624624542158109095244120233, −5.91022029342992991163260945346, −4.56765105067927125306035083518, −3.39851478785159545803861195973, −2.14641973567871489123447945075,
0.27647657844965387612131433877, 1.40329686489076269739106779520, 2.41966581545510576503914260785, 4.19065861651640633201959575238, 5.23193735000298371912898166415, 5.93230521568187760191337984999, 7.29495143853881468371535156304, 8.682455427172272337749185291269, 9.306327293045087413871770529446, 10.35552324586099047025922338445