Properties

Label 2-294-7.4-c5-0-5
Degree 22
Conductor 294294
Sign 0.9000.435i-0.900 - 0.435i
Analytic cond. 47.152847.1528
Root an. cond. 6.866796.86679
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2 + 3.46i)2-s + (−4.5 + 7.79i)3-s + (−7.99 + 13.8i)4-s + (−51.7 − 89.6i)5-s − 36·6-s − 63.9·8-s + (−40.5 − 70.1i)9-s + (206. − 358. i)10-s + (−120. + 208. i)11-s + (−72 − 124. i)12-s + 805.·13-s + 931.·15-s + (−128 − 221. i)16-s + (646. − 1.12e3i)17-s + (162 − 280. i)18-s + (137. + 238. i)19-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.925 − 1.60i)5-s − 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (0.654 − 1.13i)10-s + (−0.299 + 0.518i)11-s + (−0.144 − 0.249i)12-s + 1.32·13-s + 1.06·15-s + (−0.125 − 0.216i)16-s + (0.542 − 0.939i)17-s + (0.117 − 0.204i)18-s + (0.0875 + 0.151i)19-s + ⋯

Functional equation

Λ(s)=(294s/2ΓC(s)L(s)=((0.9000.435i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(294s/2ΓC(s+5/2)L(s)=((0.9000.435i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.900 - 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 294294    =    23722 \cdot 3 \cdot 7^{2}
Sign: 0.9000.435i-0.900 - 0.435i
Analytic conductor: 47.152847.1528
Root analytic conductor: 6.866796.86679
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ294(67,)\chi_{294} (67, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 294, ( :5/2), 0.9000.435i)(2,\ 294,\ (\ :5/2),\ -0.900 - 0.435i)

Particular Values

L(3)L(3) \approx 0.67468178800.6746817880
L(12)L(\frac12) \approx 0.67468178800.6746817880
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(23.46i)T 1 + (-2 - 3.46i)T
3 1+(4.57.79i)T 1 + (4.5 - 7.79i)T
7 1 1
good5 1+(51.7+89.6i)T+(1.56e3+2.70e3i)T2 1 + (51.7 + 89.6i)T + (-1.56e3 + 2.70e3i)T^{2}
11 1+(120.208.i)T+(8.05e41.39e5i)T2 1 + (120. - 208. i)T + (-8.05e4 - 1.39e5i)T^{2}
13 1805.T+3.71e5T2 1 - 805.T + 3.71e5T^{2}
17 1+(646.+1.12e3i)T+(7.09e51.22e6i)T2 1 + (-646. + 1.12e3i)T + (-7.09e5 - 1.22e6i)T^{2}
19 1+(137.238.i)T+(1.23e6+2.14e6i)T2 1 + (-137. - 238. i)T + (-1.23e6 + 2.14e6i)T^{2}
23 1+(1.89e3+3.28e3i)T+(3.21e6+5.57e6i)T2 1 + (1.89e3 + 3.28e3i)T + (-3.21e6 + 5.57e6i)T^{2}
29 11.22e3T+2.05e7T2 1 - 1.22e3T + 2.05e7T^{2}
31 1+(2.81e34.87e3i)T+(1.43e72.47e7i)T2 1 + (2.81e3 - 4.87e3i)T + (-1.43e7 - 2.47e7i)T^{2}
37 1+(4.53e37.86e3i)T+(3.46e7+6.00e7i)T2 1 + (-4.53e3 - 7.86e3i)T + (-3.46e7 + 6.00e7i)T^{2}
41 1+1.82e4T+1.15e8T2 1 + 1.82e4T + 1.15e8T^{2}
43 1+1.17e4T+1.47e8T2 1 + 1.17e4T + 1.47e8T^{2}
47 1+(1.15e41.99e4i)T+(1.14e8+1.98e8i)T2 1 + (-1.15e4 - 1.99e4i)T + (-1.14e8 + 1.98e8i)T^{2}
53 1+(8.83e31.52e4i)T+(2.09e83.62e8i)T2 1 + (8.83e3 - 1.52e4i)T + (-2.09e8 - 3.62e8i)T^{2}
59 1+(9.18e31.59e4i)T+(3.57e86.19e8i)T2 1 + (9.18e3 - 1.59e4i)T + (-3.57e8 - 6.19e8i)T^{2}
61 1+(5.66e3+9.80e3i)T+(4.22e8+7.31e8i)T2 1 + (5.66e3 + 9.80e3i)T + (-4.22e8 + 7.31e8i)T^{2}
67 1+(1.80e43.12e4i)T+(6.75e81.16e9i)T2 1 + (1.80e4 - 3.12e4i)T + (-6.75e8 - 1.16e9i)T^{2}
71 1+6.34e4T+1.80e9T2 1 + 6.34e4T + 1.80e9T^{2}
73 1+(2.64e4+4.58e4i)T+(1.03e91.79e9i)T2 1 + (-2.64e4 + 4.58e4i)T + (-1.03e9 - 1.79e9i)T^{2}
79 1+(2.42e44.20e4i)T+(1.53e9+2.66e9i)T2 1 + (-2.42e4 - 4.20e4i)T + (-1.53e9 + 2.66e9i)T^{2}
83 11.13e5T+3.93e9T2 1 - 1.13e5T + 3.93e9T^{2}
89 1+(5.41e4+9.38e4i)T+(2.79e9+4.83e9i)T2 1 + (5.41e4 + 9.38e4i)T + (-2.79e9 + 4.83e9i)T^{2}
97 19.96e4T+8.58e9T2 1 - 9.96e4T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.67746599532900493366641035191, −10.36386178977784635372531329472, −9.129144071586550605333348675836, −8.456192258112928217952465554590, −7.63111350276851282839529306859, −6.23335823569125001920137255739, −5.05909528642798878902088862602, −4.50958013114299861744887360528, −3.44172828692050778258738652739, −1.09198641351113775959050559666, 0.19472807488905400749879755380, 1.83577275211195568490860382596, 3.28653292807623554903241064502, 3.81783796757596073178725100313, 5.69018738939597738078411138806, 6.46747154302176764150305047309, 7.58033851108019026727045520910, 8.407207801739574347314267956758, 10.05141424857939280733624960394, 10.86049903970582339848557020601

Graph of the ZZ-function along the critical line