Properties

Label 2-294-7.4-c5-0-19
Degree 22
Conductor 294294
Sign 0.900+0.435i0.900 + 0.435i
Analytic cond. 47.152847.1528
Root an. cond. 6.866796.86679
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 − 3.46i)2-s + (−4.5 + 7.79i)3-s + (−7.99 + 13.8i)4-s + (30.5 + 52.8i)5-s + 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (122. − 211. i)10-s + (18.2 − 31.6i)11-s + (−72 − 124. i)12-s + 34.5·13-s − 549.·15-s + (−128 − 221. i)16-s + (1.03e3 − 1.78e3i)17-s + (−162 + 280. i)18-s + (−226. − 391. i)19-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.546 + 0.946i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.386 − 0.669i)10-s + (0.0455 − 0.0788i)11-s + (−0.144 − 0.249i)12-s + 0.0567·13-s − 0.630·15-s + (−0.125 − 0.216i)16-s + (0.864 − 1.49i)17-s + (−0.117 + 0.204i)18-s + (−0.143 − 0.248i)19-s + ⋯

Functional equation

Λ(s)=(294s/2ΓC(s)L(s)=((0.900+0.435i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.900 + 0.435i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(294s/2ΓC(s+5/2)L(s)=((0.900+0.435i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.900 + 0.435i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 294294    =    23722 \cdot 3 \cdot 7^{2}
Sign: 0.900+0.435i0.900 + 0.435i
Analytic conductor: 47.152847.1528
Root analytic conductor: 6.866796.86679
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ294(67,)\chi_{294} (67, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 294, ( :5/2), 0.900+0.435i)(2,\ 294,\ (\ :5/2),\ 0.900 + 0.435i)

Particular Values

L(3)L(3) \approx 1.5492336441.549233644
L(12)L(\frac12) \approx 1.5492336441.549233644
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(2+3.46i)T 1 + (2 + 3.46i)T
3 1+(4.57.79i)T 1 + (4.5 - 7.79i)T
7 1 1
good5 1+(30.552.8i)T+(1.56e3+2.70e3i)T2 1 + (-30.5 - 52.8i)T + (-1.56e3 + 2.70e3i)T^{2}
11 1+(18.2+31.6i)T+(8.05e41.39e5i)T2 1 + (-18.2 + 31.6i)T + (-8.05e4 - 1.39e5i)T^{2}
13 134.5T+3.71e5T2 1 - 34.5T + 3.71e5T^{2}
17 1+(1.03e3+1.78e3i)T+(7.09e51.22e6i)T2 1 + (-1.03e3 + 1.78e3i)T + (-7.09e5 - 1.22e6i)T^{2}
19 1+(226.+391.i)T+(1.23e6+2.14e6i)T2 1 + (226. + 391. i)T + (-1.23e6 + 2.14e6i)T^{2}
23 1+(842.+1.45e3i)T+(3.21e6+5.57e6i)T2 1 + (842. + 1.45e3i)T + (-3.21e6 + 5.57e6i)T^{2}
29 1+4.76e3T+2.05e7T2 1 + 4.76e3T + 2.05e7T^{2}
31 1+(2.63e3+4.55e3i)T+(1.43e72.47e7i)T2 1 + (-2.63e3 + 4.55e3i)T + (-1.43e7 - 2.47e7i)T^{2}
37 1+(6.41e31.11e4i)T+(3.46e7+6.00e7i)T2 1 + (-6.41e3 - 1.11e4i)T + (-3.46e7 + 6.00e7i)T^{2}
41 1+7.12e3T+1.15e8T2 1 + 7.12e3T + 1.15e8T^{2}
43 11.11e4T+1.47e8T2 1 - 1.11e4T + 1.47e8T^{2}
47 1+(1.17e42.03e4i)T+(1.14e8+1.98e8i)T2 1 + (-1.17e4 - 2.03e4i)T + (-1.14e8 + 1.98e8i)T^{2}
53 1+(3.51e3+6.08e3i)T+(2.09e83.62e8i)T2 1 + (-3.51e3 + 6.08e3i)T + (-2.09e8 - 3.62e8i)T^{2}
59 1+(2.21e4+3.82e4i)T+(3.57e86.19e8i)T2 1 + (-2.21e4 + 3.82e4i)T + (-3.57e8 - 6.19e8i)T^{2}
61 1+(9.69e3+1.67e4i)T+(4.22e8+7.31e8i)T2 1 + (9.69e3 + 1.67e4i)T + (-4.22e8 + 7.31e8i)T^{2}
67 1+(1.04e41.81e4i)T+(6.75e81.16e9i)T2 1 + (1.04e4 - 1.81e4i)T + (-6.75e8 - 1.16e9i)T^{2}
71 17.98e4T+1.80e9T2 1 - 7.98e4T + 1.80e9T^{2}
73 1+(1.85e4+3.20e4i)T+(1.03e91.79e9i)T2 1 + (-1.85e4 + 3.20e4i)T + (-1.03e9 - 1.79e9i)T^{2}
79 1+(2.10e4+3.64e4i)T+(1.53e9+2.66e9i)T2 1 + (2.10e4 + 3.64e4i)T + (-1.53e9 + 2.66e9i)T^{2}
83 1+6.31e3T+3.93e9T2 1 + 6.31e3T + 3.93e9T^{2}
89 1+(2.57e44.45e4i)T+(2.79e9+4.83e9i)T2 1 + (-2.57e4 - 4.45e4i)T + (-2.79e9 + 4.83e9i)T^{2}
97 1+1.27e5T+8.58e9T2 1 + 1.27e5T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.87923620233826606212448345331, −9.873576427387013293876501970022, −9.469139069364412359603211788551, −8.088016442433662616360030767258, −6.95685814746379592541523498874, −5.88214388309627707603379116910, −4.63544094189059521318662516656, −3.28212807909080380237813309844, −2.36027543222915141452321961214, −0.64728673517564259845963850735, 0.920144686825478246991350279564, 1.87309944060745736984388791615, 3.97246458168992858530276665448, 5.42929931438859363164514173476, 5.89305400142353704721752748212, 7.16303003550840066179163364602, 8.137161832933176238838386454617, 8.935348021224542482968687719946, 9.911902960021351977576981427562, 10.84510738049131759334532256222

Graph of the ZZ-function along the critical line