Properties

Label 2-294-7.2-c5-0-7
Degree 22
Conductor 294294
Sign 0.6050.795i0.605 - 0.795i
Analytic cond. 47.152847.1528
Root an. cond. 6.866796.86679
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2 − 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (13 − 22.5i)5-s + 36·6-s − 63.9·8-s + (−40.5 + 70.1i)9-s + (−51.9 − 90.0i)10-s + (179 + 310. i)11-s + (72 − 124. i)12-s − 332·13-s + 234·15-s + (−128 + 221. i)16-s + (63 + 109. i)17-s + (162 + 280. i)18-s + (−1.10e3 + 1.90e3i)19-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.232 − 0.402i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.164 − 0.284i)10-s + (0.446 + 0.772i)11-s + (0.144 − 0.249i)12-s − 0.544·13-s + 0.268·15-s + (−0.125 + 0.216i)16-s + (0.0528 + 0.0915i)17-s + (0.117 + 0.204i)18-s + (−0.699 + 1.21i)19-s + ⋯

Functional equation

Λ(s)=(294s/2ΓC(s)L(s)=((0.6050.795i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(294s/2ΓC(s+5/2)L(s)=((0.6050.795i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 294294    =    23722 \cdot 3 \cdot 7^{2}
Sign: 0.6050.795i0.605 - 0.795i
Analytic conductor: 47.152847.1528
Root analytic conductor: 6.866796.86679
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ294(79,)\chi_{294} (79, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 294, ( :5/2), 0.6050.795i)(2,\ 294,\ (\ :5/2),\ 0.605 - 0.795i)

Particular Values

L(3)L(3) \approx 2.1365667812.136566781
L(12)L(\frac12) \approx 2.1365667812.136566781
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(2+3.46i)T 1 + (-2 + 3.46i)T
3 1+(4.57.79i)T 1 + (-4.5 - 7.79i)T
7 1 1
good5 1+(13+22.5i)T+(1.56e32.70e3i)T2 1 + (-13 + 22.5i)T + (-1.56e3 - 2.70e3i)T^{2}
11 1+(179310.i)T+(8.05e4+1.39e5i)T2 1 + (-179 - 310. i)T + (-8.05e4 + 1.39e5i)T^{2}
13 1+332T+3.71e5T2 1 + 332T + 3.71e5T^{2}
17 1+(63109.i)T+(7.09e5+1.22e6i)T2 1 + (-63 - 109. i)T + (-7.09e5 + 1.22e6i)T^{2}
19 1+(1.10e31.90e3i)T+(1.23e62.14e6i)T2 1 + (1.10e3 - 1.90e3i)T + (-1.23e6 - 2.14e6i)T^{2}
23 1+(1.07e3+1.85e3i)T+(3.21e65.57e6i)T2 1 + (-1.07e3 + 1.85e3i)T + (-3.21e6 - 5.57e6i)T^{2}
29 1+3.61e3T+2.05e7T2 1 + 3.61e3T + 2.05e7T^{2}
31 1+(2.83e34.90e3i)T+(1.43e7+2.47e7i)T2 1 + (-2.83e3 - 4.90e3i)T + (-1.43e7 + 2.47e7i)T^{2}
37 1+(1.46e3+2.53e3i)T+(3.46e76.00e7i)T2 1 + (-1.46e3 + 2.53e3i)T + (-3.46e7 - 6.00e7i)T^{2}
41 12.14e3T+1.15e8T2 1 - 2.14e3T + 1.15e8T^{2}
43 16.38e3T+1.47e8T2 1 - 6.38e3T + 1.47e8T^{2}
47 1+(3.26e35.64e3i)T+(1.14e81.98e8i)T2 1 + (3.26e3 - 5.64e3i)T + (-1.14e8 - 1.98e8i)T^{2}
53 1+(5.35e39.26e3i)T+(2.09e8+3.62e8i)T2 1 + (-5.35e3 - 9.26e3i)T + (-2.09e8 + 3.62e8i)T^{2}
59 1+(2.12e43.68e4i)T+(3.57e8+6.19e8i)T2 1 + (-2.12e4 - 3.68e4i)T + (-3.57e8 + 6.19e8i)T^{2}
61 1+(2.24e43.88e4i)T+(4.22e87.31e8i)T2 1 + (2.24e4 - 3.88e4i)T + (-4.22e8 - 7.31e8i)T^{2}
67 1+(7241.25e3i)T+(6.75e8+1.16e9i)T2 1 + (-724 - 1.25e3i)T + (-6.75e8 + 1.16e9i)T^{2}
71 1+4.40e3T+1.80e9T2 1 + 4.40e3T + 1.80e9T^{2}
73 1+(1.02e41.77e4i)T+(1.03e9+1.79e9i)T2 1 + (-1.02e4 - 1.77e4i)T + (-1.03e9 + 1.79e9i)T^{2}
79 1+(3.26e45.64e4i)T+(1.53e92.66e9i)T2 1 + (3.26e4 - 5.64e4i)T + (-1.53e9 - 2.66e9i)T^{2}
83 11.02e5T+3.93e9T2 1 - 1.02e5T + 3.93e9T^{2}
89 1+(6.40e41.10e5i)T+(2.79e94.83e9i)T2 1 + (6.40e4 - 1.10e5i)T + (-2.79e9 - 4.83e9i)T^{2}
97 11.13e5T+8.58e9T2 1 - 1.13e5T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.95972840037414925701694915414, −10.15188181225150597881321490842, −9.364826522892778695543790551364, −8.513954658983610688932399918090, −7.17846294992893375536625963588, −5.81949269244628833384782371554, −4.74644636969917032823404774823, −3.90387884159142652007025271696, −2.54445364563080335554005424394, −1.34688145532103827685278266608, 0.49602306900848312024214238818, 2.29781881329715037036176194058, 3.43198829009702849543240627499, 4.79561554778738951173206647394, 6.05793948831282596266349838456, 6.79804518967372025373211861673, 7.73713937743768409212497700691, 8.748365335055392703734936576431, 9.607192464078556703127653208561, 10.97247486440045530362241191083

Graph of the ZZ-function along the critical line