L(s) = 1 | + (−2 + 3.46i)2-s + (−4.5 − 7.79i)3-s + (−7.99 − 13.8i)4-s + (11.2 − 19.4i)5-s + 36·6-s + 63.9·8-s + (−40.5 + 70.1i)9-s + (44.9 + 77.9i)10-s + (−170. − 294. i)11-s + (−72 + 124. i)12-s + 728.·13-s − 202.·15-s + (−128 + 221. i)16-s + (404. + 701. i)17-s + (−162 − 280. i)18-s + (513. − 888. i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.201 − 0.348i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.142 + 0.246i)10-s + (−0.424 − 0.734i)11-s + (−0.144 + 0.249i)12-s + 1.19·13-s − 0.232·15-s + (−0.125 + 0.216i)16-s + (0.339 + 0.588i)17-s + (−0.117 − 0.204i)18-s + (0.326 − 0.564i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.386+0.922i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.386+0.922i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), 0.386+0.922i)
|
Particular Values
L(3) |
≈ |
1.328905147 |
L(21) |
≈ |
1.328905147 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2−3.46i)T |
| 3 | 1+(4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(−11.2+19.4i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(170.+294.i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−728.T+3.71e5T2 |
| 17 | 1+(−404.−701.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−513.+888.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(711.−1.23e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1−5.21e3T+2.05e7T2 |
| 31 | 1+(3.51e3+6.09e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(6.39e3−1.10e4i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+1.17e3T+1.15e8T2 |
| 43 | 1−3.66e3T+1.47e8T2 |
| 47 | 1+(−4.65e3+8.06e3i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(1.78e4+3.08e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.51e4+2.63e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−1.60e4+2.78e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(1.06e4+1.84e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−6.11e4T+1.80e9T2 |
| 73 | 1+(−2.06e4−3.57e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(−1.75e4+3.03e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+8.61e4T+3.93e9T2 |
| 89 | 1+(−3.89e4+6.75e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−1.61e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80027010386463807244771222791, −9.678637711320721846694431433760, −8.579720729718251855214782708841, −7.996093207311133050971425787702, −6.75756850157364672983408263036, −5.91126277404953145765458783994, −5.04821341870029481448958778208, −3.42034549365550281877376625769, −1.60485374640931317454032050579, −0.50703506543731530270446824941,
1.08414002896829867392297372945, 2.57326640511419660239006376063, 3.73973190031628130907894059642, 4.89996542908997233300932179086, 6.11807911051165345421185958271, 7.31594869983354040218129889810, 8.492095190300712325178801568986, 9.391034478897736813604934927572, 10.46898081972947847047049845440, 10.71673538095802339354820289310