L(s) = 1 | + (−2 + 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (−30.5 + 52.8i)5-s − 36·6-s + 63.9·8-s + (−40.5 + 70.1i)9-s + (−122. − 211. i)10-s + (18.2 + 31.6i)11-s + (72 − 124. i)12-s − 34.5·13-s − 549.·15-s + (−128 + 221. i)16-s + (−1.03e3 − 1.78e3i)17-s + (−162 − 280. i)18-s + (226. − 391. i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.546 + 0.946i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.386 − 0.669i)10-s + (0.0455 + 0.0788i)11-s + (0.144 − 0.249i)12-s − 0.0567·13-s − 0.630·15-s + (−0.125 + 0.216i)16-s + (−0.864 − 1.49i)17-s + (−0.117 − 0.204i)18-s + (0.143 − 0.248i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.318i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.7498207336\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7498207336\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 3.46i)T \) |
| 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (30.5 - 52.8i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-18.2 - 31.6i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 34.5T + 3.71e5T^{2} \) |
| 17 | \( 1 + (1.03e3 + 1.78e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-226. + 391. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (842. - 1.45e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 4.76e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (2.63e3 + 4.55e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-6.41e3 + 1.11e4i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 7.12e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.11e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (1.17e4 - 2.03e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-3.51e3 - 6.08e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (2.21e4 + 3.82e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-9.69e3 + 1.67e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.04e4 + 1.81e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 7.98e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (1.85e4 + 3.20e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (2.10e4 - 3.64e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 6.31e3T + 3.93e9T^{2} \) |
| 89 | \( 1 + (2.57e4 - 4.45e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.27e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10013684943588723215929444153, −9.618036268444725818201688636104, −9.182925359377721862656260444208, −7.72862656859814840586007141855, −7.26832845584367800222180109021, −6.06255575862572756083903982230, −4.79588065535016770624800005026, −3.63970699014396584381104725703, −2.37213439224294875715512849939, −0.25784404514436090916783576927,
1.00948000079525689390794197276, 2.11931261879410886376081098485, 3.63877585010834601417724967217, 4.59906983269689322257651654206, 6.08281657980994776768704224692, 7.40189167177027544402155400617, 8.429926355187836498322276458573, 8.800595384431472337308056469854, 10.04069961796474880417794398804, 11.07567510895942704842644818402