L(s) = 1 | + (−2 + 3.46i)2-s + (4.5 + 7.79i)3-s + (−7.99 − 13.8i)4-s + (−30.5 + 52.8i)5-s − 36·6-s + 63.9·8-s + (−40.5 + 70.1i)9-s + (−122. − 211. i)10-s + (18.2 + 31.6i)11-s + (72 − 124. i)12-s − 34.5·13-s − 549.·15-s + (−128 + 221. i)16-s + (−1.03e3 − 1.78e3i)17-s + (−162 − 280. i)18-s + (226. − 391. i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.546 + 0.946i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.386 − 0.669i)10-s + (0.0455 + 0.0788i)11-s + (0.144 − 0.249i)12-s − 0.0567·13-s − 0.630·15-s + (−0.125 + 0.216i)16-s + (−0.864 − 1.49i)17-s + (−0.117 − 0.204i)18-s + (0.143 − 0.248i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.947+0.318i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(0.947+0.318i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.947+0.318i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(79,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), 0.947+0.318i)
|
Particular Values
L(3) |
≈ |
0.7498207336 |
L(21) |
≈ |
0.7498207336 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2−3.46i)T |
| 3 | 1+(−4.5−7.79i)T |
| 7 | 1 |
good | 5 | 1+(30.5−52.8i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−18.2−31.6i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1+34.5T+3.71e5T2 |
| 17 | 1+(1.03e3+1.78e3i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(−226.+391.i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(842.−1.45e3i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+4.76e3T+2.05e7T2 |
| 31 | 1+(2.63e3+4.55e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(−6.41e3+1.11e4i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1−7.12e3T+1.15e8T2 |
| 43 | 1−1.11e4T+1.47e8T2 |
| 47 | 1+(1.17e4−2.03e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−3.51e3−6.08e3i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(2.21e4+3.82e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−9.69e3+1.67e4i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(1.04e4+1.81e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1−7.98e4T+1.80e9T2 |
| 73 | 1+(1.85e4+3.20e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(2.10e4−3.64e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−6.31e3T+3.93e9T2 |
| 89 | 1+(2.57e4−4.45e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1−1.27e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10013684943588723215929444153, −9.618036268444725818201688636104, −9.182925359377721862656260444208, −7.72862656859814840586007141855, −7.26832845584367800222180109021, −6.06255575862572756083903982230, −4.79588065535016770624800005026, −3.63970699014396584381104725703, −2.37213439224294875715512849939, −0.25784404514436090916783576927,
1.00948000079525689390794197276, 2.11931261879410886376081098485, 3.63877585010834601417724967217, 4.59906983269689322257651654206, 6.08281657980994776768704224692, 7.40189167177027544402155400617, 8.429926355187836498322276458573, 8.800595384431472337308056469854, 10.04069961796474880417794398804, 11.07567510895942704842644818402