L(s) = 1 | + (0.563 + 0.826i)2-s + (1.68 + 0.392i)3-s + (−0.365 + 0.930i)4-s + (1.89 + 0.585i)5-s + (0.626 + 1.61i)6-s + (−2.33 − 1.24i)7-s + (−0.974 + 0.222i)8-s + (2.69 + 1.32i)9-s + (0.585 + 1.89i)10-s + (0.512 − 0.0384i)11-s + (−0.981 + 1.42i)12-s + (−0.441 + 0.916i)13-s + (−0.291 − 2.62i)14-s + (2.97 + 1.73i)15-s + (−0.733 − 0.680i)16-s + (2.74 + 0.413i)17-s + ⋯ |
L(s) = 1 | + (0.398 + 0.584i)2-s + (0.974 + 0.226i)3-s + (−0.182 + 0.465i)4-s + (0.848 + 0.261i)5-s + (0.255 + 0.659i)6-s + (−0.883 − 0.468i)7-s + (−0.344 + 0.0786i)8-s + (0.897 + 0.440i)9-s + (0.185 + 0.600i)10-s + (0.154 − 0.0115i)11-s + (−0.283 + 0.412i)12-s + (−0.122 + 0.254i)13-s + (−0.0778 − 0.702i)14-s + (0.767 + 0.447i)15-s + (−0.183 − 0.170i)16-s + (0.666 + 0.100i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.450 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.82628 + 1.12413i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.82628 + 1.12413i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.563 - 0.826i)T \) |
| 3 | \( 1 + (-1.68 - 0.392i)T \) |
| 7 | \( 1 + (2.33 + 1.24i)T \) |
good | 5 | \( 1 + (-1.89 - 0.585i)T + (4.13 + 2.81i)T^{2} \) |
| 11 | \( 1 + (-0.512 + 0.0384i)T + (10.8 - 1.63i)T^{2} \) |
| 13 | \( 1 + (0.441 - 0.916i)T + (-8.10 - 10.1i)T^{2} \) |
| 17 | \( 1 + (-2.74 - 0.413i)T + (16.2 + 5.01i)T^{2} \) |
| 19 | \( 1 + (6.52 + 3.76i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.417 + 2.77i)T + (-21.9 + 6.77i)T^{2} \) |
| 29 | \( 1 + (-0.493 - 0.393i)T + (6.45 + 28.2i)T^{2} \) |
| 31 | \( 1 + (0.0488 - 0.0281i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.66 - 6.77i)T + (-27.1 + 25.1i)T^{2} \) |
| 41 | \( 1 + (1.50 + 6.61i)T + (-36.9 + 17.7i)T^{2} \) |
| 43 | \( 1 + (-0.323 + 1.41i)T + (-38.7 - 18.6i)T^{2} \) |
| 47 | \( 1 + (0.902 - 0.615i)T + (17.1 - 43.7i)T^{2} \) |
| 53 | \( 1 + (10.9 + 4.27i)T + (38.8 + 36.0i)T^{2} \) |
| 59 | \( 1 + (-11.4 + 3.53i)T + (48.7 - 33.2i)T^{2} \) |
| 61 | \( 1 + (4.24 - 1.66i)T + (44.7 - 41.4i)T^{2} \) |
| 67 | \( 1 + (3.27 + 5.67i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.42 - 5.12i)T + (15.7 - 69.2i)T^{2} \) |
| 73 | \( 1 + (-8.41 + 12.3i)T + (-26.6 - 67.9i)T^{2} \) |
| 79 | \( 1 + (4.00 - 6.93i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-13.9 + 6.73i)T + (51.7 - 64.8i)T^{2} \) |
| 89 | \( 1 + (0.954 - 12.7i)T + (-88.0 - 13.2i)T^{2} \) |
| 97 | \( 1 - 12.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.35989513731820722584826280018, −10.69346853147547537966550802221, −9.894130612679194972280248096816, −9.105411514394823500456597241269, −8.099453974688231972466574583890, −6.89803600086454989040671721777, −6.24817117712258484950882068960, −4.70983620699232829951602282895, −3.58083197773896344629344120168, −2.36264212782492146189125207279,
1.76425727582161180477193846203, 2.90620540366522539932344361075, 4.04745044730610018919440080273, 5.62692216037737468481474399426, 6.49282981491174363421529660154, 7.935027118679488572964906588049, 9.062926861819744239086026881038, 9.693985319318040958230669916364, 10.41352463441931896622604886017, 11.91991578760297429152089814140