Properties

Label 2-294-147.101-c1-0-6
Degree $2$
Conductor $294$
Sign $-0.0482 + 0.998i$
Analytic cond. $2.34760$
Root an. cond. $1.53218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.930 − 0.365i)2-s + (−1.72 + 0.170i)3-s + (0.733 + 0.680i)4-s + (−0.562 − 0.383i)5-s + (1.66 + 0.470i)6-s + (−1.02 + 2.43i)7-s + (−0.433 − 0.900i)8-s + (2.94 − 0.588i)9-s + (0.383 + 0.562i)10-s + (−0.601 − 3.99i)11-s + (−1.37 − 1.04i)12-s + (1.92 − 1.53i)13-s + (1.84 − 1.89i)14-s + (1.03 + 0.564i)15-s + (0.0747 + 0.997i)16-s + (−1.73 − 0.533i)17-s + ⋯
L(s)  = 1  + (−0.658 − 0.258i)2-s + (−0.995 + 0.0984i)3-s + (0.366 + 0.340i)4-s + (−0.251 − 0.171i)5-s + (0.680 + 0.192i)6-s + (−0.388 + 0.921i)7-s + (−0.153 − 0.318i)8-s + (0.980 − 0.196i)9-s + (0.121 + 0.177i)10-s + (−0.181 − 1.20i)11-s + (−0.398 − 0.302i)12-s + (0.534 − 0.426i)13-s + (0.493 − 0.505i)14-s + (0.267 + 0.145i)15-s + (0.0186 + 0.249i)16-s + (−0.419 − 0.129i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0482 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0482 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(294\)    =    \(2 \cdot 3 \cdot 7^{2}\)
Sign: $-0.0482 + 0.998i$
Analytic conductor: \(2.34760\)
Root analytic conductor: \(1.53218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{294} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 294,\ (\ :1/2),\ -0.0482 + 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.338364 - 0.355096i\)
\(L(\frac12)\) \(\approx\) \(0.338364 - 0.355096i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.930 + 0.365i)T \)
3 \( 1 + (1.72 - 0.170i)T \)
7 \( 1 + (1.02 - 2.43i)T \)
good5 \( 1 + (0.562 + 0.383i)T + (1.82 + 4.65i)T^{2} \)
11 \( 1 + (0.601 + 3.99i)T + (-10.5 + 3.24i)T^{2} \)
13 \( 1 + (-1.92 + 1.53i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (1.73 + 0.533i)T + (14.0 + 9.57i)T^{2} \)
19 \( 1 + (-1.85 + 1.07i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.52 + 8.18i)T + (-19.0 + 12.9i)T^{2} \)
29 \( 1 + (-5.96 + 1.36i)T + (26.1 - 12.5i)T^{2} \)
31 \( 1 + (4.37 + 2.52i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-6.91 + 6.41i)T + (2.76 - 36.8i)T^{2} \)
41 \( 1 + (-6.53 + 3.14i)T + (25.5 - 32.0i)T^{2} \)
43 \( 1 + (-1.51 - 0.731i)T + (26.8 + 33.6i)T^{2} \)
47 \( 1 + (4.27 - 10.8i)T + (-34.4 - 31.9i)T^{2} \)
53 \( 1 + (7.86 - 8.47i)T + (-3.96 - 52.8i)T^{2} \)
59 \( 1 + (-0.00789 + 0.00538i)T + (21.5 - 54.9i)T^{2} \)
61 \( 1 + (-2.82 - 3.04i)T + (-4.55 + 60.8i)T^{2} \)
67 \( 1 + (-3.82 + 6.62i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-5.04 - 1.15i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (4.71 - 1.84i)T + (53.5 - 49.6i)T^{2} \)
79 \( 1 + (-1.53 - 2.65i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-0.403 + 0.505i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (10.5 + 1.59i)T + (85.0 + 26.2i)T^{2} \)
97 \( 1 + 9.68iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.29859152562754003994500346693, −10.82174916609698920116837522442, −9.709388179310784350046583557906, −8.756768699794672011623185273145, −7.86735502423499690534422642682, −6.36208140512089357706814704072, −5.82535436435061000069017418635, −4.30851553597905376709892701296, −2.71347619616674022555857798952, −0.53962522630119887493426995883, 1.49372033853237993735212106813, 3.82999263528893860145471230006, 5.08787460392524734804049753567, 6.39253763962127277529581034697, 7.13902411980869708454314602012, 7.87275799200593829670609509823, 9.541976023609433891001247579765, 10.05192152285243459551064075724, 11.08017638094524690174556180206, 11.70199908513029151149343766307

Graph of the $Z$-function along the critical line