L(s) = 1 | + 4·2-s + 9·3-s + 16·4-s − 46.9·5-s + 36·6-s + 64·8-s + 81·9-s − 187.·10-s − 87.4·11-s + 144·12-s − 754.·13-s − 422.·15-s + 256·16-s + 1.44e3·17-s + 324·18-s − 2.54e3·19-s − 750.·20-s − 349.·22-s − 912.·23-s + 576·24-s − 922.·25-s − 3.01e3·26-s + 729·27-s + 173.·29-s − 1.68e3·30-s − 4.53e3·31-s + 1.02e3·32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.839·5-s + 0.408·6-s + 0.353·8-s + 0.333·9-s − 0.593·10-s − 0.217·11-s + 0.288·12-s − 1.23·13-s − 0.484·15-s + 0.250·16-s + 1.21·17-s + 0.235·18-s − 1.61·19-s − 0.419·20-s − 0.154·22-s − 0.359·23-s + 0.204·24-s − 0.295·25-s − 0.875·26-s + 0.192·27-s + 0.0382·29-s − 0.342·30-s − 0.846·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4T |
| 3 | 1−9T |
| 7 | 1 |
good | 5 | 1+46.9T+3.12e3T2 |
| 11 | 1+87.4T+1.61e5T2 |
| 13 | 1+754.T+3.71e5T2 |
| 17 | 1−1.44e3T+1.41e6T2 |
| 19 | 1+2.54e3T+2.47e6T2 |
| 23 | 1+912.T+6.43e6T2 |
| 29 | 1−173.T+2.05e7T2 |
| 31 | 1+4.53e3T+2.86e7T2 |
| 37 | 1−6.82e3T+6.93e7T2 |
| 41 | 1+1.30e4T+1.15e8T2 |
| 43 | 1+1.22e4T+1.47e8T2 |
| 47 | 1+1.34e4T+2.29e8T2 |
| 53 | 1+9.67e3T+4.18e8T2 |
| 59 | 1+3.03e4T+7.14e8T2 |
| 61 | 1+732.T+8.44e8T2 |
| 67 | 1−4.63e4T+1.35e9T2 |
| 71 | 1+3.29e3T+1.80e9T2 |
| 73 | 1+1.02e4T+2.07e9T2 |
| 79 | 1−9.85e4T+3.07e9T2 |
| 83 | 1+8.77e4T+3.93e9T2 |
| 89 | 1−6.90e4T+5.58e9T2 |
| 97 | 1−4.21e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.51590376643020948724991736487, −9.618435821522000277883246917381, −8.222255341193597779137211559764, −7.63949462728791222179988627107, −6.56065676400068965456360293352, −5.17126059653199896645049647197, −4.15823314085556576211956936436, −3.18018357860610324492688567034, −1.95131346687695533031826424056, 0,
1.95131346687695533031826424056, 3.18018357860610324492688567034, 4.15823314085556576211956936436, 5.17126059653199896645049647197, 6.56065676400068965456360293352, 7.63949462728791222179988627107, 8.222255341193597779137211559764, 9.618435821522000277883246917381, 10.51590376643020948724991736487