L(s) = 1 | − 4·2-s − 9·3-s + 16·4-s − 26·5-s + 36·6-s − 64·8-s + 81·9-s + 104·10-s − 358·11-s − 144·12-s − 332·13-s + 234·15-s + 256·16-s − 126·17-s − 324·18-s + 2.20e3·19-s − 416·20-s + 1.43e3·22-s − 2.14e3·23-s + 576·24-s − 2.44e3·25-s + 1.32e3·26-s − 729·27-s − 3.61e3·29-s − 936·30-s − 5.66e3·31-s − 1.02e3·32-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.465·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.328·10-s − 0.892·11-s − 0.288·12-s − 0.544·13-s + 0.268·15-s + 1/4·16-s − 0.105·17-s − 0.235·18-s + 1.39·19-s − 0.232·20-s + 0.630·22-s − 0.844·23-s + 0.204·24-s − 0.783·25-s + 0.385·26-s − 0.192·27-s − 0.797·29-s − 0.189·30-s − 1.05·31-s − 0.176·32-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.6009647163 |
L(21) |
≈ |
0.6009647163 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+p2T |
| 3 | 1+p2T |
| 7 | 1 |
good | 5 | 1+26T+p5T2 |
| 11 | 1+358T+p5T2 |
| 13 | 1+332T+p5T2 |
| 17 | 1+126T+p5T2 |
| 19 | 1−2200T+p5T2 |
| 23 | 1+2142T+p5T2 |
| 29 | 1+3610T+p5T2 |
| 31 | 1+5668T+p5T2 |
| 37 | 1+2922T+p5T2 |
| 41 | 1−2142T+p5T2 |
| 43 | 1−6388T+p5T2 |
| 47 | 1−6520T+p5T2 |
| 53 | 1+10702T+p5T2 |
| 59 | 1+42524T+p5T2 |
| 61 | 1−44840T+p5T2 |
| 67 | 1+1448T+p5T2 |
| 71 | 1+62pT+p5T2 |
| 73 | 1+20500T+p5T2 |
| 79 | 1−65236T+p5T2 |
| 83 | 1−102804T+p5T2 |
| 89 | 1−128006T+p5T2 |
| 97 | 1−113324T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89998889112775390931188380798, −10.01551586200578884775026638630, −9.177276495302374498963343358431, −7.77714911097757860906220121471, −7.41255817535828905180997149700, −5.99952106366225872595590896861, −5.03939370182261565538025126896, −3.55332159566161255377636934530, −2.05298204378893589144892360531, −0.48421193587887993428961725216,
0.48421193587887993428961725216, 2.05298204378893589144892360531, 3.55332159566161255377636934530, 5.03939370182261565538025126896, 5.99952106366225872595590896861, 7.41255817535828905180997149700, 7.77714911097757860906220121471, 9.177276495302374498963343358431, 10.01551586200578884775026638630, 10.89998889112775390931188380798