L(s) = 1 | + 1.41·3-s + 1.41i·5-s − i·7-s + 1.00·9-s + (−0.707 + 0.707i)13-s + 2.00i·15-s + 1.41i·19-s − 1.41i·21-s + 2·23-s − 1.00·25-s + 1.41·35-s + (−1.00 + 1.00i)39-s + 1.41i·45-s − 49-s + 2.00i·57-s + ⋯ |
L(s) = 1 | + 1.41·3-s + 1.41i·5-s − i·7-s + 1.00·9-s + (−0.707 + 0.707i)13-s + 2.00i·15-s + 1.41i·19-s − 1.41i·21-s + 2·23-s − 1.00·25-s + 1.41·35-s + (−1.00 + 1.00i)39-s + 1.41i·45-s − 49-s + 2.00i·57-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.960769330\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.960769330\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 3 | \( 1 - 1.41T + T^{2} \) |
| 5 | \( 1 - 1.41iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - 1.41iT - T^{2} \) |
| 23 | \( 1 - 2T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + 1.41iT - T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 2iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.096853250913227653152041428495, −8.134641940371039077383835174295, −7.51262202172533071485497857967, −7.00814237672911695534229974041, −6.36572528731631120153281003542, −4.99963572458858540318388140270, −3.92916743748449040022177749409, −3.36273230211768659078341144150, −2.65681194409379412654779901492, −1.68251305297090407784206146699,
1.14267381849883199594566833199, 2.49101923101141950941641141133, 2.88441013950534007533070264167, 4.10721004759174667684788453529, 5.09557412397718818382599342686, 5.37920740541460559824249463172, 6.80036122199674012768306890463, 7.58806586911730797748556198484, 8.449985650385217894431702086506, 8.770579520087997646255370463763