L(s) = 1 | + (0.866 − 0.5i)3-s + (0.866 + 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s + 13-s + 0.999·15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (−0.866 + 0.5i)21-s + (0.866 + 0.5i)23-s + i·27-s + (0.5 + 0.866i)31-s + (−0.866 − 0.499i)33-s + (−0.866 − 0.5i)35-s + (0.866 + 0.5i)37-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (0.866 + 0.5i)5-s − 7-s + (−0.5 − 0.866i)11-s + 13-s + 0.999·15-s + (0.5 + 0.866i)17-s + (0.5 − 0.866i)19-s + (−0.866 + 0.5i)21-s + (0.866 + 0.5i)23-s + i·27-s + (0.5 + 0.866i)31-s + (−0.866 − 0.499i)33-s + (−0.866 − 0.5i)35-s + (0.866 + 0.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.197i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.980 + 0.197i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.793662483\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.793662483\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + 2iT - T^{2} \) |
| 43 | \( 1 + 2iT - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.774826768965038875730379616188, −8.380430521001953947515351909706, −7.31868673237813645620368146820, −6.75492250276480059339971713402, −5.86839170944046404735763822395, −5.41174401704239908415773533343, −3.80766951069659873015248468099, −3.05133946010759103296165880554, −2.53912568256000408551789120393, −1.30031785491693215899853259240,
1.29441096137028170791807603606, 2.64444053393142533621233520977, 3.18060870956564645310967425638, 4.17894766210980900163847810019, 5.05499444763161877870077695721, 5.99211816615426140390075657843, 6.52457744874554858365258660960, 7.69490630327938864034302316571, 8.279792786408509436428531081374, 9.277904040586998899938514996134