L(s) = 1 | + (0.5 + 0.866i)5-s − i·7-s + 9-s − 13-s + (0.5 + 0.866i)17-s − 2i·19-s + (0.866 + 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + (0.5 + 0.866i)45-s + (−0.866 + 0.5i)47-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)5-s − i·7-s + 9-s − 13-s + (0.5 + 0.866i)17-s − 2i·19-s + (0.866 + 0.5i)23-s + (−0.5 − 0.866i)29-s + (0.866 + 0.5i)31-s + (0.866 − 0.5i)35-s + (0.5 − 0.866i)37-s + (0.5 + 0.866i)41-s + (0.866 + 0.5i)43-s + (0.5 + 0.866i)45-s + (−0.866 + 0.5i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0569i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0569i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.456617111\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.456617111\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + iT \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 - T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + 2iT - T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.289404069725070002885675245191, −7.83315755922405298025352735900, −7.42163479889185392946699608096, −6.73179803836719908628784791608, −6.13852496639072899830562639544, −4.83171873227696173427336332765, −4.37203430500965283752138901920, −3.21045877839861181455580413343, −2.41262670907915739341797048515, −1.12996429314413170921987416089,
1.28758956107251820057287433572, 2.18810254105662554123589555701, 3.27277079187133878002913402487, 4.46221523099855679242444146330, 5.15249817197963838890160080184, 5.69137873070247673921951691595, 6.67479588768798516581991149642, 7.52193007206578490058806444835, 8.244627852477459469401430698099, 9.042947459024283828757752366437